首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Band selection for hyperspectral images based on particle swarm optimization and differential evolution algorithms with hybrid encoding
【24h】

Band selection for hyperspectral images based on particle swarm optimization and differential evolution algorithms with hybrid encoding

机译:基于粒子群算法和混合编码差分进化算法的高光谱图像波段选择

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary algorithms have been widely used in band selection for hyperspectral images. The particle swarm optimization (PSO) and the differential evolution (DE) algorithms are two common evolutionary techniques with efficient optimization capabilities. In order to fully utilize the advantages they provide, a band selection method is proposed based on the two algorithms with hybrid encoding. This method firstly uses hybrid encoding to make PSO and DE suitable for band selection. Secondly, the classification accuracy of an SVM classifier is used as the fitness function. Thirdly, we adopt the double population parallel iterative method to search for the optimal band combination. The experimental results on AVIRIS hyperspectral data show that the average classification accuracy of our proposed method is higher than the binary PSO algorithm, higher than the hybrid particle swarm algorithm, and higher than the hybrid coding differential evolution algorithm. These classification results demonstrate the effectiveness of the proposed method.
机译:进化算法已广泛用于高光谱图像的波段选择中。粒子群优化(PSO)和差分进化(DE)算法是具有有效优化功能的两种常见进化技术。为了充分利用它们提供的优点,提出了一种基于两种混合编码算法的频带选择方法。该方法首先使用混合编码使PSO和DE适合频带选择。其次,将支持向量机分类器的分类精度用作适应度函数。第三,我们采用双种群并行迭代法寻找最优的波段组合。在AVIRIS高光谱数据上的实验结果表明,该方法的平均分类精度高于二进制PSO算法,高于混合粒子群算法,并且高于混合编码差分进化算法。这些分类结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号