首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Research on schedule-based user recommendation model based on improved K-means algorithm
【24h】

Research on schedule-based user recommendation model based on improved K-means algorithm

机译:基于改进的K-means算法的基于时间表的用户推荐模型研究

获取原文
获取原文并翻译 | 示例

摘要

Nowadays all kinds of social platforms provide various recommendation services, greatly enriching people's life. In the condition that social platforms have become indispensable tools, people have more to except that the social platforms can provide more convenient and efficient services for life and work. With three dimensions of context: time, place and activity, this paper presents one new real-time recommendation methodology based on user's schedule. It transforms the schedule-based user recommendations into text clustering using K-means algorithm. Due to the predefined limit of value K in traditional K-means algorithm, the K-means algorithm is improved and an application of improved K-means algorithm in the recommendations model of schedule-based users is introduced in this paper. The results of relevant experiments and analysis indicate that the system improved the recall and precision than traditional one and has practical application value.
机译:如今,各种社交平台都提供各种推荐服务,极大地丰富了人们的生活。在社交平台已成为必不可少的工具的情况下,人们除了拥有社交平台可以为生活和工作提供更便捷,更高效的服务外,还有更多的工作要做。结合上下文的三个维度:时间,地点和活动,本文提出了一种基于用户计划的实时推荐方法。它使用K-means算法将基于计划的用户推荐转换为文本聚类。针对传统K-means算法中预先定义的K值限制,对K-means算法进行了改进,并介绍了改进的K-means算法在基于调度的用户推荐模型中的应用。相关实验和分析结果表明,该系统比传统系统提高了查全率和查准率,具有实用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号