首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Time-delay wavelet network predictor based on sensitivity analysis with application to predictive ship course control
【24h】

Time-delay wavelet network predictor based on sensitivity analysis with application to predictive ship course control

机译:基于灵敏度分析的时延小波网络预测器及其在船舶航向预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

An improved time-delay wavelet neural network (WNN) is proposed to represent the complex nonlinear and time-varying dynamics of ship motion based on sensitivity analysis approach. To improve the generalization performance of WNN, inputs of the wavelet network are selected based on their relative contribution to the overall output. To evaluate the contribution of inputs in the WNN, an index is proposed referred to as relative contribution rate (RCR). The resulted network is utilized as an online ship motion predictor. Based on the predictor, a predictive PID controller is presented and implemented in a ship course-following control. Simulation of online predictive ship course-following control was conducted and results demonstrate the feasibility and efficiency of the WNN predictor and the WNN-based predictive control strategy.
机译:提出了一种改进的时延小波神经网络(WNN),基于灵敏度分析方法来表示船舶运动的复杂非线性和时变动力学。为了提高WNN的泛化性能,基于小波网络对总输出的相对贡献来选择小波网络的输入。为了评估WNN中投入的贡献,提出了一个称为相对贡献率(RCR)的指数。生成的网络被用作在线船舶运动预测器。基于预测器,提出了一种预测PID控制器,并在船舶航向跟踪控制中实现。进行了在线预测性船舶跟踪控制的仿真,结果证明了WNN预测器和基于WNN的预测控制策略的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号