首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >A data-stream-based abnormal data mining in web texts environment
【24h】

A data-stream-based abnormal data mining in web texts environment

机译:Web文本环境中基于数据流的异常数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

The stability and self-adaption for combination texts must be processed in Web Texts Environment. Therefore a language and technology method for self-adapting environment of web texts is needed. To do this, we have built an adaptive data-stream method in which the abnormal data mining process is started. The resource consumption of abnormal data in a text includes the resource consumption of error text and the total resource consumptions of relating with the previously executed texts which are dependent on the error text. In this paper an adaptive data-stream method is applied to implement the Abnormal Data Mining in Web Texts Environment. Proved by simulation verification, we proposed this adaptive data-stream method is efficient for solving the problem of abnormal data mining in web texts environment.
机译:组合文本的稳定性和自适应性必须在Web文本环境中处理。因此,需要一种用于网页文本的自适应环境的语言和技术方法。为此,我们建立了一种自适应数据流方法,其中异常数据挖掘过程开始了。文本中异常数据的资源消耗包括错误文本的资源消耗和与先前执行的文本相关的总资源消耗,这些资源依赖于错误文本。本文将自适应数据流方法应用于Web文本环境下的异常数据挖掘。经过仿真验证,提出了一种自适应的数据流方法,可以有效解决网络文本环境下数据挖掘异常的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号