首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >A hybrid P/KPCA-based approach for motion capture data automatic segmentation
【24h】

A hybrid P/KPCA-based approach for motion capture data automatic segmentation

机译:基于混合P / KPCA的运动捕获数据自动分割方法

获取原文
获取原文并翻译 | 示例

摘要

A Motion Data Automatic Segmentation using a Probabilistic/Kernel principal component analysis (P/KPCA) method is proposed. This approach utilizes Kernel principal component analysis (KPCA) to construct a kernel function while using Probabilistic principal component analysis (PPCA) to reduce motion noise. Formulate the feature function to obtain the derivative of projection error, and detect the segmentation point of data through analyzing the change of geometric features to realize the automatic segmentation. It is indicated in the experiment that the motion capture technique has certain feasibility. The paper presents the automatic segmentation approach of the motion capture data, in which the motion data is automatic segmented through KPCA combined with PPCA to reduce the dimension and project the 56 dimensional data in 2 dimensional space; formulate the feature function to obtain the derivative of projection error, and detect the segmentation point of data through analyzing the change of geometric features to realize the automatic segmentation. It is indicated in the experiment that the motion capture technique has certain feasibility.
机译:提出了一种使用概率/核主成分分析(P / KPCA)方法的运动数据自动分割方法。这种方法利用内核主成分分析(KPCA)构造内核函数,同时使用概率主成分分析(PPCA)减少运动噪声。制定特征函数以获得投影误差的导数,并通过分析几何特征的变化来检测数据的分割点,从而实现自动分割。实验表明,运动捕捉技术具有一定的可行性。本文提出了一种运动捕捉数据的自动分割方法,该方法通过结合KPCA和PPCA对运动数据进行自动分割,以减小维数并将56维数据投影到二维空间中。制定特征函数以获得投影误差的导数,并通过分析几何特征的变化来检测数据的分割点,从而实现自动分割。实验表明,运动捕捉技术具有一定的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号