首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Study on face recognition under unconstrained conditions based on LBP and deep learning
【24h】

Study on face recognition under unconstrained conditions based on LBP and deep learning

机译:基于LBP和深度学习的无约束条件下的人脸识别研究

获取原文
获取原文并翻译 | 示例

摘要

At present, the correct recognition rate of face recognition algorithm is limited under unconstrained conditions. To solve this problem, a face recognition algorithm based on deep learning under unconstrained conditions is proposed in this paper. The algorithm takes LBP texture feature as the input data of deep network, and trains the network layer by layer greedily to obtain optimized parameters of network, and then uses the trained network to predict the test samples. Experimental results on the face database LFW show that the proposed algorithm has higher correct recognition rate than some traditional algorithms under unconstrained conditions. In order to further verify its effectiveness and universality, this algorithm was also tested in YALE and YALE-B, and achieved a high correct recognition rate as well, which indicated that the deep learning method using LBP texture feature as input data is effective and robust to face recognition.
机译:目前,在无约束条件下,人脸识别算法的正确识别率受到限制。 为了解决这个问题,本文提出了一种基于无约束条件下深度学习的人脸识别算法。 该算法将LBP纹理特征作为深网络的输入数据,并通过层贪图汇集网络层以获得网络的优化参数,然后使用训练网络预测测试样本。 面部数据库的实验结果LFW表明,所提出的算法在不受约束条件下的一些传统算法具有更高的正确识别率。 为了进一步验证其有效性和普遍性,该算法还在耶鲁和耶鲁-B中进行了测试,并实现了高正确的识别率,这表明使用LBP纹理特征作为输入数据的深度学习方法是有效且鲁棒的 面对识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号