首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Composite material terahertz image fusion based on PCNN and RGEDIM under non-subsampled shearlet transform
【24h】

Composite material terahertz image fusion based on PCNN and RGEDIM under non-subsampled shearlet transform

机译:基于PCNN和RGEIM的复合材料Terahertz图像融合在非分离的剪柏变换下

获取原文
获取原文并翻译 | 示例

摘要

In order to solve the problem that defects of different scales have different terahertz imaging characteristics in fiber reinforced composites, the fusion processing method of two terahertz images with complementary defect information was studied. To reduce the Gibbs phenomenon, Non-subsampled Shearlet Transform (NSST) with the property of shift-invariance was used to decompose source images and get their low-frequency subband and high frequency subband coefficients. Regional variance was used as connection strength factor of the Pulse Coupled Neural Network (PCNN) in the low frequency coefficient fusion, which is more according with human visual characteristics. In the fusion of high frequency coefficients, the Regional Gradient Energy of Direction Information Measure (RGEDIM) was introduced to extract the edge, texture and other details of the image and integrated them into the final image, the impact of noise on image fusion was reduced better. Finally, the fusion image was obtained through NSST inverse transform. The experimental results show that this method is superior to wavelet, Non-subsampled Contourlet Transform (NSCT) and traditional PCNN method, the fusion image has more mutual information and contains more original image information, all the defects of the source image can be clearly seen on the fusion image.
机译:为了解决不同尺度的缺陷具有纤维增强复合材料中具有不同的太赫兹成像特性的问题,研究了两个具有互补缺陷信息的太赫兹图像的融合处理方法。为了减少GIBB现象,使用换档不变性的属性的非分配的Shearlet变换(NSST)来分解源图像并获得其低频子带和高频子带系数。区域方差用作低频系数融合中脉冲耦合神经网络(PCNN)的连接强度因子,这更加可根据人类的视觉特性。在高频系数的融合中,引入了方向信息测量(RGEDIM)的区域梯度能量,以提取图像的边缘,纹理和其他细节并将它们集成到最终图像中,降低了噪声对图像融合的影响更好的。最后,通过NSST逆变换获得融合图像。实验结果表明,该方法优于小波,非倍增轮廓变换(NSCT)和传统的PCNN方法,融合图像具有更多相互信息并包含更多原始图像信息,可以清楚地看到源图像的所有缺陷在融合图像上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号