首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >The filtering method of MEMS gyro signal based on sparse decomposition
【24h】

The filtering method of MEMS gyro signal based on sparse decomposition

机译:基于稀疏分解的MEMS陀螺信号的滤波方法

获取原文
获取原文并翻译 | 示例

摘要

Traditional denoising methods for Micro-electromechanical Systems (MEMS) gyro signal are required to obtain a priori noise statistical properties, which result in poor denoising performance in MEMS gyro utilized in Micro-Inertial Measurement While Drilling (MWD), due to the unknown and complex noise characteristics in MWD. According to this problem, a kind of gyro signal denoising method based on sparse decomposition without a requirement of the priori noise characteristics, utilizing a newly designed atom dictionary, is proposed. Firstly, the MEMS gyro output differential equation is established on the basis of the physical mechanism of the MEMS gyro, then the real MEMS gyro output signal characteristics are analyzed according to the solution of the differential equation. Secondly, the characteristic wave atom most similar to the gyro output signal is designed. Finally, the gyro signal sparse decomposition denoising experiments based on the designed atom dictionary are conducted, compared with the wavelet threshold method and Kalman filter. The experiment results show that the proposed denoising method based on sparse decomposition utilizing the newly designed atom dictionary outperforms wavelet threshold method and Kalman filter in MEMS gyro signal processing of MWD, especially when the noise statistical properties of gyro signal are completely unknown.
机译:用于微机电系统(MEMS)陀螺仪信号的传统去噪方法是获得先验噪声统计特性,这导致在微惯性测量中使用的MEMS陀螺仪中的较差的表现,而钻孔(MWD),由于未知和复杂MWD中的噪声特性。根据该问题,提出了一种基于稀疏分解的陀螺仪信号去噪方法,其利用新设计的原子字典的优先级噪声特性的要求。首先,基于MEMS陀螺的物理机制建立MEMS陀螺输出差分方程,然后根据差分方程的解决方案分析真实的MEMS陀螺输出信号特性。其次,设计了与陀螺仪输出信号最相似的特征波原子。最后,与小波阈值方法和卡尔曼滤波器相比,进行了基于所设计的原子词典的陀螺仪信号稀疏分解去噪实验。实验结果表明,基于利用新设计的原子词典的稀疏分解的提出的去噪方法优于MWD的MEMS陀螺信号处理中的小波阈值方法和卡尔曼滤波器,特别是当陀螺仪信号的噪声统计特性完全未知时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号