首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Research of color image segmentation algorithm based on asymmetric kernel density estimation
【24h】

Research of color image segmentation algorithm based on asymmetric kernel density estimation

机译:基于非对称核密度估计的彩色图像分割算法研究

获取原文
获取原文并翻译 | 示例

摘要

Traditional kernel density estimation method only depends on a given sample, in which the same weight of kernel function reduces the ability to distinguish the category of image region, though it has certain advantages in image segmentation. A novel method based on asymmetric kernel density estimation is introduced for more accurately integrating the differences among color features of samples marked by users. The method differently treats the kernel function, and the weight coefficient is introduced in the kernel density estimation function to express each kernel function's contribution to the overall estimation. Simulation experimental results show that our proposed method is more powerful in category description and distinguishing, which enhances the regional information constraints and robustness of the segmentation model and the integrity of the target region, and more accurately segments thin elongated region when compared with traditional kernel density estimation method.
机译:传统的内核密度估计方法仅取决于给定的样本,其中相同的核心功能重量降低了区分图像区域类别的能力,尽管它在图像分割中具有某些优点。引入了一种基于非对称核密度估计的新方法,用于更准确地集成用户标记的样本的颜色特征之间的差异。该方法不同地处理内核函数,并且在内核密度估计函数中引入了权重系所,以表达每个内核函数对整体估计的贡献。模拟实验结果表明,我们的拟议方法在类别描述和区分中更强大,这提高了分割模型的区域信息约束和鲁棒性,与传统的核密度相比,较好地段的细长区域薄细长区域薄细长区域估计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号