首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Study of chemical dosing control system in power plants based on multi-model switching and improved smith pre-compensation
【24h】

Study of chemical dosing control system in power plants based on multi-model switching and improved smith pre-compensation

机译:基于多模型切换的发电厂化学计量控制系统及改进史密斯预补偿研究

获取原文
获取原文并翻译 | 示例

摘要

Aiming at nonlinear, large delayed time and large load variation characteristics of chemical dosing system in power plants, a PID (Proportional Integral Differential) algorithm with neural network based on multi-model switching and improved Smith pre-compensation is proposed. The algorithm uses Smith pre-compensation to deal with the large delayed time, and uses RBF (Radical Basis Function) neural network to adjust PID parameters to deal with the nonlinear. The multi-model switching control strategy is also adopted to transform the highly nonlinear dosing system of power plant into several linearized sub-models according to load ranges, which overcomes the difficult problem of large load variation and disturbance. To reduce transition time and fluctuations caused by model switching, an improved Smith pre-compensation controller for multi-model switching is proposed, where two parallel Smith predictors are added to the Smith pre-compensation part. The three Smith predictors can match three mathematical sub-models of the control system well. Finally, to improve control effects, genetic algorithm is adopted to automatically optimize the parameters. These simulation results show that the control strategy can obtain higher robustness and steadiness.
机译:提出了一种基于多模型切换和改进的史密斯预补偿的PID(比例整体差分)与神经网络的非线性,大型延迟时间和大负载变化特性。该算法使用Smith预补偿来处理大的延迟时间,并使用RBF(激进的基函数)神经网络来调整PID参数来处理非线性。还采用多模型切换控制策略来根据负载范围将电厂的高度非线性计量系统转换为几个线性化子模型,这克服了大负载变化和干扰的难题。为了降低由模型切换引起的过渡时间和波动,提出了一种改进的用于多模型切换的史密斯预补偿控制器,其中两个并行史密斯预测器被添加到史密斯预补偿部分中。三个史密斯预测器可以匹配控制系统的三个数学子模型。最后,为了提高控制效果,采用遗传算法自动优化参数。这些仿真结果表明,控制策略可以获得更高的鲁棒性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号