首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Network security situation prediction in the cloud environment based on grey neural network
【24h】

Network security situation prediction in the cloud environment based on grey neural network

机译:基于灰色神经网络的云环境中网络安全状况预测

获取原文
获取原文并翻译 | 示例

摘要

Existing network security prediction methods for the cloud environment are limited in terms of both accuracy and real-time performance. In this paper, we address these issues with a proposal for a method based on grey neural network to predict network security situations in cloud environments. First, we explore security factors for network security situation awareness based on classification and fusion techniques in order to generate awareness indexes. Through this, we establish a hierarchical index system for network security situation. Then, a method is elaborated that combines grey theory and neural networks to predict network security situations by analyzing the features of grey and neural networks that combine high accuracy and real-time performance. Finally, through experiments with simulated data, a network prediction algorithm for security situations is verified. Results of experiments show that the method is both correct and feasible.
机译:针对云环境的现有网络安全性预测方法在准确性和实时性能方面均受到限制。在本文中,我们针对基于灰色神经网络的方法预测云环境中的网络安全状况提出了解决方案。首先,我们基于分类和融合技术探索网络安全状况感知的安全因素,以生成感知指标。通过这种方式,我们建立了针对网络安全状况的分级索引系统。然后,阐述了一种将灰色理论和神经网络相结合的方法,通过分析将高精度和实时性能相结合的灰色和神经网络的特征来预测网络安全状况。最后,通过对模拟数据的实验,验证了用于安全状况的网络预测算法。实验结果表明该方法是正确可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号