首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Super resolution reconstruction of medical image based on adaptive quad-tree decomposition
【24h】

Super resolution reconstruction of medical image based on adaptive quad-tree decomposition

机译:基于自适应四叉树分解的医学图像超分辨率重建

获取原文
获取原文并翻译 | 示例

摘要

Medical CT imaging has an important sense in thetreatment process. However, the low resolution of CT images could easilyaffect the final diagnosis, which is influenced by the resolution and theradiation dosage. We propose to solve this problem by using an adaptiveimage super-resolution reconstruction algorithm. First, the algorithm of theCT image of quad-tree decomposition obtains adaptive access to differentscales of the image patches. Then, we exploit K-means clustering algorithmto determine the cluster center. Using the center of cluster, we can obtainthe mapping function between the low-resolution image patches and thehigh-resolution image patches. Finally, the algorithm reconstructs ahigh-resolution image through the mapping function. The experimental resultshave shown that the proposed method is capable of enhanced CT imagereconstruction, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).
机译:医学CT成像在治疗过程中具有重要意义。但是,CT图像的低分辨率很容易影响最终诊断,这受分辨率和放射剂量的影响。我们建议通过使用自适应图像超分辨率重建算法来解决此问题。首先,四叉树分解的CT图像算法可以自适应访问不同比例的图像块。然后,我们利用K-means聚类算法确定聚类中心。利用聚类中心,可以获得低分辨率图像斑块与高分辨率图像斑块之间的映射函数。最后,该算法通过映射函数重构高分辨率图像。实验结果表明,该方法能够增强CT图像重建,峰值信噪比(PSNR)和结构相似度(SSIM)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号