首页> 外文期刊>Journal of Computational Electronics >Lattice Temperature Model and Temperature Effects in Oxide-Confined VCSEL's
【24h】

Lattice Temperature Model and Temperature Effects in Oxide-Confined VCSEL's

机译:氧化物受限VCSEL的晶格温度模型和温度效应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A lattice temperature model is derived for oxide-confined vertical cavity surface emitting lasers (VCSELs) based on carrier transport and the conservation of energy. Peltier heat is caused by the bandedge and quasi-Fermi level discontinuities at a heterojunction. However, considering the device size, Peltier heat needs to be distributed and is not just generated at the interface, otherwise, an anomolous spike in temperature will occur. We have developed a novel treatment to model the Peltier heat at a heterojunction by use of a Monte Carlo simulation. Peltier heat is found to be a major heat contributor, and it results in a rapid and high temperature rise in the separate confinement heterostructure (SCH) region of the laser diode. We have also shown that the carrier thermal conductivities for materials with high mobilities must be included at high carrier densities because they contribute to additional spreading of the thermal energy. Subsequently, this lattice temperature model is coupled self-consistently to electronic and optical solvers to form a complete simulator for VCSELs. Self-heating causes a fast temperature rise when the VCSEL is operated under continuous wave conditions, causing resonant wavelength changes and an eventual thermal rollover. The resonant wavelength shift has been shown to be caused mainly by the heating of the distributed Bragg reflectors even though the peak temperature occurs within the SCH region. Possible physical factors causing the thermal rollover have also been examined with our complete simulator. The Auger recombination process is found to be one of the main factors causing the thermal rollover in 980 nm oxide-confined VCSELs while the photon lifetime is a factor in determining the position of the thermal rollover. We have also achieved a very good match between our simulated results and experimental data.
机译:基于载流子传输和能量守恒,推导了氧化物受限的垂直腔表面发射激光器(VCSEL)的晶格温度模型。珀尔帖热是由异质结处的带边和准费米能级不连续引起的。但是,考虑到器件尺寸,珀耳帖热量需要分配,而不仅仅是在界面处产生,否则,温度会出现异常的峰值。我们已经开发出一种新颖的处理方法,可通过使用蒙特卡洛模拟对异质结处的珀耳帖热进行建模。发现珀尔帖热量是主要的热量贡献者,它导致激光二极管的单独限制异质结构(SCH)区域中的温度快速升高。我们还表明,必须以高载流子密度包括高迁移率材料的载流子导热率,因为它们会导致热能的进一步扩散。随后,该晶格温度模型自洽地耦合到电子和光学求解器,以形成用于VCSEL的完整仿真器。当VCSEL在连续波条件下工作时,自热会导致温度快速升高,从而引起谐振波长变化并最终导致热翻转。已经显示出共振波长偏移主要是由分布式布拉格反射器的加热引起的,即使峰值温度出现在SCH区域内。我们完整的模拟器还检查了可能引起热翻转的物理因素。发现俄歇复合过程是在980 nm氧化物限制的VCSEL中引起热翻转的主要因素之一,而光子寿命是确定热翻转位置的因素。我们还在模拟结果和实验数据之间取得了很好的匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号