首页> 外文期刊>Journal of Combinatorial Optimization >An inverse approach to convex ordered median problems in trees
【24h】

An inverse approach to convex ordered median problems in trees

机译:树中凸有序中位数问题的逆方法

获取原文
获取原文并翻译 | 示例

摘要

The convex ordered median problem is a generalization of the median, the k-centrum or the center problem. The task of the associated inverse problem is to change edge lengths at minimum cost such that a given vertex becomes an optimal solution of the location problem, i.e., an ordered median. It is shown that the problem is NP-hard even if the underlying network is a tree and the ordered median problem is convex and either the vertex weights are all equal to 1 or the underlying problem is the k-centrum problem. For the special case of the inverse unit weight k-centrum problem a polynomial time algorithm is developed.
机译:凸有序中位数问题是中位数,k中心或中心问题的推广。相关的反问题的任务是以最小的成本改变边长,以使给定的顶点成为位置问题的最佳解决方案,即有序中位数。结果表明,即使基础网络是一棵树并且有序中位数问题是凸的,并且顶点权重都等于1或基础问题是k中心问题,问题仍然是NP难题。针对单位重量逆k-中心问题的特殊情况,开发了多项式时间算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号