首页> 外文期刊>Journal of Asian earth sciences >Origin and evolution of ore-forming fluids in the Hemushan magnetite-apatite deposit, Anhui Province, Eastern China, and their metallogenic significance
【24h】

Origin and evolution of ore-forming fluids in the Hemushan magnetite-apatite deposit, Anhui Province, Eastern China, and their metallogenic significance

机译:中国东部安徽禾木山磁铁矿-磷灰石矿床成矿流体的成因及演化及其成矿意义

获取原文
获取原文并翻译 | 示例
       

摘要

The Middle-Lower Yangtze River Metallogenic Belt in the northern Yangtze Block is one of the most important economic mineral districts in China. The Hemushan deposit is a medium-class Fe deposit located in the southern part of the Ningwu iron ore district of the Middle-Lower Yangtze River Metallogenic Belt. The Fe-orebodies are mainly hosted in the contact zone between diorite and Triassic marble. The actinolite-phlogopite-apatite-magnetite ore shows metasomatic/filling textures and disseminated/mesh-vein structures. Based on evidences and petrographic observations, the ore-forming process can be divided into three distinct periods the early metallogenic period (albite-diopside stage), the middle metallogenic period (magnetite stage and hematite stage), and the late metallogenic period (quartz-pyrite stage and carbonate stage). Fluid inclusion studies show four types of inclusions: type I daughter mineral-bearing three-phase inclusions (L + V + S), type II vapor-rich two-phase inclusions (L + V), type III liquid-rich two phase inclusions (L + V), and minor type IV liquid-phase inclusions (L). Apatites from the magnetite stage contain type I, type II and type III inclusions; anhydrites from the hematite stage mainly contain abundant type II inclusions and relatively less type I inclusions; quartz and calcite from the late metallogenic stage are mainly characterized by type III inclusions. Laser Raman spectroscopy and microthermometry of fluid inclusions show that the ore-forming fluids broadly correspond to unsaturated NaCl-H2O system. From the magnetite stage to the carbonate stage, the ore-forming fluids evolved from moderate-high temperature (average 414 degrees C), moderate salinity (average 25.01 wt.% NaCl equiv.) conditions to low temperature (average 168 degrees C), low salinity (average 6.18 wt.% NaCl equiv.) conditions. Hydrogen and oxygen isotopic studies indicate that the ore-forming fluid during the early stage of middle metallogenic period was mainly of magmatic water, and mixing of the ore fluids with meteoric water took place during the late phase. During this evolution, water-rock interaction, and boiling and mixing of the ore fluids with meteoric water occurred. The boiling of fluids was a potential mechanism for the formation of magnetite. (C) 2014 Elsevier Ltd. All rights reserved.
机译:扬子北部地区的长江中下游成矿带是中国最重要的经济矿区之一。禾木山矿床是位于长江中下游成矿带宁武铁矿区南部的中型铁矿床。铁矿石主要存在于闪长岩与三叠纪大理石之间的接触区域。阳起石-金云母-磷灰石-磁铁矿矿石具有交代/充填结构和弥散/网状结构。根据证据和岩相学观察,成矿过程可分为成矿早期(阿尔比-透辉石阶段),成矿中期(磁铁矿和赤铁矿阶段)和成矿后期(石英-石英)三个不同的时期。黄铁矿阶段和碳酸盐阶段)。流体包裹体研究显示出四种类型的包裹体:I型子矿物含矿三相包裹体(L + V + S),II型富蒸气性两相包裹体(L + V),III型富液态两相包裹体(L + V)和次要IV型液相夹杂物(L)。磁铁矿阶段的磷灰石含有I型,II型和III型夹杂物;赤铁矿阶段的硬石膏主要含有丰富的Ⅱ型夹杂物和相对较少的Ⅰ型夹杂物。成矿后期的石英和方解石的主要特征是Ⅲ型夹杂物。流体夹杂物的激光拉曼光谱和显微热分析表明,成矿流体大致对应于不饱和NaCl-H2O系统。从磁铁矿阶段到碳酸盐阶段,成矿流体从中等高温(平均414摄氏度),中等盐度(平均25.01 wt。%NaCl当量)条件发展到低温(平均168摄氏度),低盐度(平均6.18 wt。%NaCl当量)条件。氢氧同位素研究表明,成矿中期中期成矿流体主要为岩浆水,后期与流水混合。在这一演化过程中,发生了水-岩相互作用以及矿液与流态水的沸腾和混合。流体的沸腾是形成磁铁矿的潜在机制。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号