首页> 外文期刊>Journal of Applied Physics >Failure mode analysis of planar zinc‐diffused In0.53Ga0.47As p‐i‐n photodiodes
【24h】

Failure mode analysis of planar zinc‐diffused In0.53Ga0.47As p‐i‐n photodiodes

机译:平面锌扩散In0.53Ga0.47As p-i-n光电二极管的失效模式分析

获取原文
获取外文期刊封面目录资料

摘要

In order to understand the irreversible failure mechanisms of planar InGaAs p‐i‐n photodiodes, 32 devices from 19 different wafers that shorted during aging were first examined in the scanning electron microscope. Included were devices that failed during long term aging (≫103 h) as well as those that failed during short term aging (≪102 h) at higher reverse bias. With a few exceptions, the diodes failed as a result of a single localized leakage source located at the perimeter of the p‐n junction. Three types of leakage sources were found: (a) a microplasma, (b) a microplasma associated with a region of high recombination rate, and (c) a microplasma associated with a thermally damaged region. Analysis of ∼40 devices before and after aging shows that leakage paths found after aging result from microplasmas initially present in the device. Defect analysis shows that neither threading dislocations nor misfit dislocations are generally responsible for these microplasmas. Analysis of the processing shows that the p‐contact/semiconductor interface is stable during device operation. Thus, the leakage source, attributed to contact migration in other studies, is not present in our devices. However, pinholes in the SiNx diffusion mask close (≪5 μm) to the perimeter of the p‐n junction were found to be the major source of microplasmas. The high‐electric field at the shallow (≲0.5 μm) p‐n junctions formed by unintentional diffusion through the dielectric pinholes is believed to cause the microplasmas. Electron‐hole pairs, recombining at the microplasma site, are believed to create defects. These defects were observed as a localized region of enhanced recombination in electron‐beam induced current (EBIC) images of the p‐n junction without applied bias. The enhanced leakage current as a result of the defects leads to-n thermal runaway.
机译:为了了解平面InGaAs p-i-n光电二极管的不可逆失效机理,首先在扫描电子显微镜中检查了19个不同晶片中老化时短路的32个器件。其中包括在较高的反向偏置下在长期老化(≫103 h)以及在短期老化(≪102 h)中失效的器件。除少数例外,由于位于p-n结周边的单个局部泄漏源,二极管出现了故障。发现了三种类型的泄漏源:(a)微等离子体,(b)与高重组率区域相关的微等离子体,和(c)与热损坏区域相关的微等离子体。老化前后对约40个设备的分析表明,老化后发现的泄漏路径是由最初存在于设备中的微粒引起的。缺陷分析表明,螺纹位错或错位错位通常都不是这些微浆肿的原因。对过程的分析表明,p触点/半导体接口在设备运行期间是稳定的。因此,在其他研究中,归因于接触迁移的泄漏源不存在于我们的设备中。然而,发现SiNx扩散掩膜中的针孔靠近p-n结的周边(约5μm)是微等离子体的主要来源。人们认为,通过介电针孔的无意扩散形成的浅(≲0.5μm)p-n结处的高电场会引起微等离子体。电子-空穴对在微等离子体部位重组,被认为会造成缺陷。在没有施加偏压的情况下,在p-n结的电子束感应电流(EBIC)图像中观察到这些缺陷是重组增强的局部区域。由于缺陷而导致的泄漏电流增加导致-n热失控。

著录项

  • 来源
    《Journal of Applied Physics》 |1984年第6期|P.1596-1606|共11页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号