首页> 外文期刊>Journal of Applied Physics >Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors
【24h】

Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors

机译:底栅,底接触并五苯薄膜晶体管的分子掺杂效应

获取原文
获取原文并翻译 | 示例
       

摘要

A bottom-gate, bottom-contact (BGBC) organic thin-film transistor (OTFT) with carrier-doped regions over, source-drain electrodes was investigated. Device simulation with our originally developed device simulator demonstrates that heavily doped layers (p~+ layers) on top of the source-drain contact region can compensate the deficiency of charge carriers at the source-channel interface during transistor operation, leading to the increase of the drain current and the apparent field-effect mobility. The phenomena expected with the device simulation were experimentally confirmed in typical BGBC pentacene thin-film transistors. The 5-nm-thick p~+ layers, located 10 nm (or 20 run) over the source-drain electrodes, were prepared by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an acceptor dopant. Since the molecular doping in this study can increase the .drain current without positive shift of threshold voltage, p~+ layers were formed precisely on top of the source-drain regions. This study shows that common inferior characteristics of bottom-contact OTFT devices mainly derive from the supply shortage of charge carriers to the channel region. The importance of reliable molecular doping techniques or heavily doped semiconductor materials for improving OTFT device performance is clearly suggested.
机译:研究了在源漏电极上方具有载流子掺杂区域的底栅,底接触(BGBC)有机薄膜晶体管(OTFT)。使用我们最初开发的器件仿真器进行的器件仿真表明,在源极-漏极接触区顶部的重掺杂层(p〜+层)可以补偿晶体管工作期间源极-沟道界面处电荷载流子的不足,从而增加了漏极电流和表观场效应迁移率。在典型的BGBC并五苯薄膜晶体管中通过实验证实了器件仿真所期望的现象。通过并五苯和2,3,5,6-四氟-7,7,8,8共蒸发制备位于源漏电极上方10 nm(或20行程)的5 nm厚的p〜+层-四氰基喹二甲烷作为受体掺杂剂。由于这项研究中的分子掺杂可以在不使阈值电压发生正向偏移的情况下增加漏极电流,因此在源极-漏极区的顶部精确地形成了p〜+层。这项研究表明,底部接触型OTFT器件的常见劣质特性主要来自于载流子对沟道区域的供应短缺。明确提出了可靠的分子掺杂技术或重掺杂半导体材料对于提高OTFT器件性能的重要性。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第v110n5期|p.054505.1-054505.6|共6页
  • 作者单位

    Department of Electronic Science & Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan;

    Department of Electronic Science & Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan;

    Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama 350-8585, Japan;

    Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama 350-8585, Japan;

    Department of Electronic Science & Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:58:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号