...
首页> 外文期刊>Journal of Applied Physics >Atomistic modelling of diamond-type Si_xGe_yC_zSn_(1-x-y-z) crystals for realistic transmission electron microscopy image simulations
【24h】

Atomistic modelling of diamond-type Si_xGe_yC_zSn_(1-x-y-z) crystals for realistic transmission electron microscopy image simulations

机译:金刚石型Si_xGe_yC_zSn_(1-x-y-z)晶体的原子建模,用于真实的透射电子显微镜图像模拟

获取原文
获取原文并翻译 | 示例

摘要

The realistic simulation of transmission electron microscopy (TEM) images requires an accurate definition of the positions of all atoms, which are linked to the mechanical properties of the material. This paper proposes an optimized atomistic modeling approach to model the lattice parameters and elastic properties of Si, Ge, diamond, alpha-tin, and related diamond alloys, with an approach compatible with systems bigger than 50 000 atoms. In order to compute precisely the elastically strained Si xGe yC zSn1-x-y-z diamond crystals, a dedicated parameterization of the Keating force field is provided. An original periodic boundary strategy is provided. Our tool is successfully used to interpret experimental TEM data with a reasonable accuracy and precision in a time scale about 10 000 times faster than ab initio methods. The method predicts the correct lattice parameters and elastic constants of elementary compounds and alloys with a deviation inferior to 8.1%. We show that subsequent Monte-Carlo simulations predict original self-ordering effects in C in good agreement with the theory. An original approach is used to quantify the short-range and long-range order in comparison with high-resolution cross-sectional TEM experiments: the projected radial distribution function (p-RDF) appears to be a universal and very sensitive analytical tool to quantify the matching between our atomistic model and the experimental HR(S)TEM results. For our reference Si-Ge multilayer with 20 millions of atoms, a maximum broadening of 100pm is obtained for the third-nearest neighbor (3nn) simulated peak of the p-RDF compared to the experimental one. The same value is obtained from a template matching analysis of the maximum local displacements between the projected experimental atomic positions and the corresponding simulation.
机译:透射电子显微镜(TEM)图像的真实模拟需要对所有原子的位置进行准确定义,这些位置与材料的机械性能有关。本文提出了一种优化的原子建模方法,该方法可以对Si,Ge,金刚石,α-锡和相关金刚石合金的晶格参数和弹性特性进行建模,并且该方法可与大于50000个原子的系统兼容。为了精确计算弹性应变的Si xGe yC zSn1-x-y-z金刚石晶体,提供了Keating力场的专用参数化。提供了原始的周期性边界策略。我们的工具已成功用于以合理的精度和精度解释实验TEM数据,其时间尺度比从头算方法快了10,000倍。该方法可预测元素化合物和合金的正确晶格参数和弹性常数,其偏差小于8.1%。我们证明,随后的蒙特卡洛模拟可以很好地预测C中的原始自排序效应,并与该理论相吻合。与高分辨率横截面TEM实验相比,原始方法用于量化短程和长程顺序:投影径向分布函数(p-RDF)似乎是一种通用且非常敏感的定量分析工具我们的原子模型与实验HR(S)TEM结果之间的匹配。对于我们的具有2000万个原子的Si-Ge多层膜,与实验值相比,p-RDF的第三近邻(3nn)模拟峰的最大展宽为100pm。从计划的实验原子位置之间的最大局部位移的模板匹配分析和相应的模拟中可以获得相同的值。

著录项

  • 来源
    《Journal of Applied Physics 》 |2019年第3期| 035105.1-035105.14| 共14页
  • 作者单位

    Univ Grenoble Alpes, Inst Engn, Grenoble INP, INRIA,CNRS,LJK, F-38000 Grenoble, France;

    Univ Grenoble Alpes, CEA, LETI, DTSI,SCMC, F-38000 Grenoble, France;

    Univ Grenoble Alpes, Inst Engn, Grenoble INP, INRIA,CNRS,LJK, F-38000 Grenoble, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号