...
首页> 外文期刊>Journal of Applied Physics >Trapping centers engineering by including of nanoparticles into organic semiconductors
【24h】

Trapping centers engineering by including of nanoparticles into organic semiconductors

机译:捕集中心通过将纳米颗粒纳入有机半导体来进行工程设计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports the characteristics of an organic field-effect transistor (OFET) with silicon nanoparticles (NPs) on a semiconductor-gate insulator interface, which work as trapping centers of charge carriers. Charge transport and injection phenomenon were studied by electrical measurements and optical time-resolved microscopy second harmonic generation (TRM-SHG) technique sensitive to injected carrier distribution and internal electric fields. We found that OFETs with low concentration of intrinsic carriers and operating in terms of injection type OFET are extremely sensitive to the internal electric field. An enormous threshold voltage shift due to trapped charge was observed, and the possibility to adjust it by controlling the NP density was found. We demonstrate that the NP film can serve to design the accumulated charge in OFET and thus change in charge injection time and transport properties. The detailed analysis of pentacene OFET based on dielectric properties and the Max well-Wagner model reveals internal electric field created by NPs. Additionally, the effect of NPs is discussed with respect to mobility estimated by electrical and TRM-SHG experiment; its decrease is related to deceleration of carrier propagation by trapping effect.
机译:本文报道了在半导体栅极绝缘体界面上具有硅纳米颗粒(NP)的有机场效应晶体管(OFET)的特性,该界面用作电荷载流子的俘获中心。通过电学测量和对注入的载流子分布和内部电场敏感的光学时间分辨显微镜二次谐波产生(TRM-SHG)技术研究了电荷的传输和注入现象。我们发现具有低内在载流子浓度且以注入型OFET操作的OFET对内部电场极为敏感。观察到由于捕获的电荷而导致的巨大阈值电压偏移,并且发现了通过控制NP密度进行调节的可能性。我们证明了NP膜可以用来设计OFET中的累积电荷,从而改变电荷注入时间和传输性质。基于介电性能和Max well-Wagner模型对并五苯OFET的详细分析揭示了NPs产生的内部电场。此外,就电学和TRM-SHG实验估计的迁移率,讨论了NP的影响。它的减少与载流子由于俘获效应而减速有关。

著录项

  • 来源
    《Journal of Applied Physics》 |2008年第11期|935-941|共7页
  • 作者单位

    Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan;

    Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan;

    Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan;

    Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号