首页> 外文期刊>Journal of Applied Physics >Comprehensive understanding of field-dependent conduction mechanisms of sub-4-nm-thick post-soft-breakdown SiO_2 films
【24h】

Comprehensive understanding of field-dependent conduction mechanisms of sub-4-nm-thick post-soft-breakdown SiO_2 films

机译:全面了解亚4纳米以下软击穿SiO_2薄膜的场相关传导机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The experimentally determined conduction mechanisms of gate leakage current are examined for two different soft-breakdown events: analog-soft breakdown and digital-soft breakdown. It is strongly suggested that space-charge-limited conduction does not, by itself, represent the main conduction mechanism after analog-soft-breakdown events. In contrast, the analog-soft-breakdown current behaviors suggest that various variable-range-hopping conduction mechanisms play important roles in the transport process. On the other hand, it is found that the incremental gate current after digital-soft-breakdown events can be experimentally expressed in a simple closed form as functions of temperature and gate voltage; the empirical expression given herein indicates that the post-digital-soft-breakdown current is not ruled by a simple or single conduction mechanism. Features of the post-digital-soft-breakdown current are examined by the field-dependent lifetime model formulated by Schenk [Solid-State Electron. 35, 1585 (1992)] it is strongly suggested that Schenk's theory primarily supports the experimental results. It is also suggested that the space-charge-limited current plays an important role, a background leakage current, in the post-digital-soft breakdown current.
机译:针对两种不同的软击穿事件,对通过实验确定的栅极泄漏电流传导机制进行了检查:模拟软击穿和数字软击穿。强烈建议在模拟软击穿事件之后,空间电荷受限的传导本身并不代表主要的传导机制。相反,模拟软击穿电流行为表明,各种变程跳跃传导机制在运输过程中起着重要作用。另一方面,发现数字软击穿事件之后的增量栅极电流可以用简单的闭合形式通过实验表示,作为温度和栅极电压的函数。本文给出的经验表达表明,数字后软击穿电流不受简单或单一导电机制的支配。数字后软击穿电流的特征通过由Schenk [固态电子35,1585(1992)]强烈建议申克理论主要支持实验结果。还建议在数字后软击穿电流中,空间电荷限制电流在背景泄漏电流中起重要作用。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第1期|014501.1-014501.9|共9页
  • 作者

    Yasuhisa Omura;

  • 作者单位

    ORDIST, Graduate School of Engineering Science, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号