...
首页> 外文期刊>Journal of Applied Physics >A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission
【24h】

A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission

机译:基于光子增强的热电子发射或负电子亲和光发射的平面光阴极发射产率模型

获取原文
获取原文并翻译 | 示例
           

摘要

A general model is presented for electron emission yield from planar photocathodes that accounts for arbitrary cathode thickness and finite recombination velocities at both front and back surfaces. This treatment is applicable to negative electron affinity emitters as well as positive electron affinity cathodes, which have been predicted to be useful for energy conversion. The emission model is based on a simple one-dimensional steady-state diffusion treatment. The resulting relation for electron yield is used to model emission from thin-film cathodes with material parameters similar to GaAs. Cathode thickness and recombination at the emissive surface are found to strongly affect emission yield from cathodes, yet the magnitude of the effect greatly depends upon the emission mechanism. A predictable optimal film thickness is found from a balance between optical absorption, surface recombination, and emission rate.
机译:提出了关于平面光电阴极的电子发射率的通用模型,该模型说明了任意阴极厚度和正反两面的有限复合速度。该处理适用于负电子亲和力发射器以及正电子亲和力阴极,这些阴极已被预测可用于能量转换。发射模型基于简单的一维稳态扩散处理。电子产量的结果关系用于对薄膜阴极的发射进行建模,其材料参数类似于GaAs。发现在发射表面的阴极厚度和复合会强烈影响阴极的发射产率,但是影响的大小很大程度上取决于发射机理。从光吸收,表面复合和发射速率之间的平衡中找到可预测的最佳膜厚度。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第9期|094907.1-094907.10|共10页
  • 作者单位

    Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA,Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA;

    Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA,Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, California 94025, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA,Department of Mechanical Engineering and Applied Physics, University of Pennsylvania, Philadelphia,Pennsylvania 19104, USA;

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,Cambridge, Massachusetts 02139, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA,Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, California 94025, USA;

    Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, California 94025, USA,Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号