首页> 外文期刊>Journal of the American Chemical Society >RNA Tetraloop Folding Reveals Tension between Backbone Restraints and Molecular Interactions
【24h】

RNA Tetraloop Folding Reveals Tension between Backbone Restraints and Molecular Interactions

机译:RNA Tetraloop折叠揭示了骨干约束与分子相互作用之间的张力

获取原文
获取原文并翻译 | 示例
       

摘要

In RNA, A-form helices are commonly terminated by tetraloops or 3′ dangling ends. Aside from helices themselves, these helix-breaking motifs appear to be among the most frequent and repetitive structural elements of large folded RNAs. We show here that within a frequent type of tetraloop, cGNRAg (G is guanine, N is any base, R is purine, A is adenine), a tension exists between the backbone torsional energy of the loop and the energy contributed by molecular interactions (stacking and pairing). A model in which favorable bond rotamers are opposed by favorable stacking and pairing interactions is consistent with our observation that release of torsional restraints upon conversion of one or more loop riboses to more flexible trimethylene phosphate(s) contributes favorably to the enthalpy of folding. This effect presumably results from improved stacking and hydrogen-bonding interactions upon release of torsional restraints. The most obvious possibility for improving molecular interactions is a repositioning of A, which is proximal to the unfavorable torsion angles in native cGNRAg tetraloops, and which is unstacked on the 3′ side and unpaired (it forms a single hydrogen bond with the opposing G). This tension between favorable bond rotamers and favorable molecular interactions may be representative of a general evolutionary strategy to prevent achievement of deep and irreversible thermodynamic wells in folded RNAs. Finally, we observe a simple stacking substructure with conserved geometry and sequence that forms a scaffold for both tetraloops and 3′ dangling ends. It seems that simple substructures can build RNA motifs, which combine to establish the fundamental architecture of RNA.
机译:在RNA中,A型螺旋通常由四环或3'悬空末端终止。除了螺旋本身之外,这些破坏螺旋的基序似乎是大折叠RNA最频繁和重复的结构元件之一。我们在这里显示出在常见的四环类型cGNRAg(G为鸟嘌呤,N为任何碱基,R为嘌呤,A为腺嘌呤)中,环的主干扭转能量与分子相互作用贡献的能量之间存在张力(堆叠和配对)。一个模型,其中有利的键旋转异构体被有利的堆积和配对相互作用所抵制,这与我们的观察结果一致,即一个或多个环核糖转变为更柔韧的磷酸三亚甲基酯时释放的扭转约束作用有利于折叠的焓。据推测,这种效果是由于扭转约束的释放改善了堆叠和氢键相互作用。改善分子相互作用的最明显的可能性是A的重新定位,该位置接近天然cGNRAg四环中不利的扭转角,并且未堆叠在3'侧且未配对(它与相对的G形成单个氢键) 。有利的键旋转异构体和有利的分子相互作用之间的这种张力可能代表了防止在折叠的RNA中实现深不可逆的热力学孔的一般进化策略。最后,我们观察到一个简单的堆积子结构,具有保守的几何结构和顺序,形成了四环和3'悬空末端的支架。看起来简单的亚结构可以构建RNA模体,这些基序结合起来可以建立RNA的基本结构。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第36期|p.12679-12689|共11页
  • 作者

    Srividya Mohan/Au;

  • 作者单位

    School of Chemistry and Biochemistry, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号