首页> 外文期刊>Journal of the American Chemical Society >Flexibility of Shape-Persistent Molecular Building Blocks Composed of p-Phenylene and Ethynylene Units
【24h】

Flexibility of Shape-Persistent Molecular Building Blocks Composed of p-Phenylene and Ethynylene Units

机译:对苯和乙炔单元组成的形状持久性分子构建基的柔性

获取原文
获取原文并翻译 | 示例
       

摘要

Ethynylene and p-phenylene are frequently employed constitutional units in constructing the backbone of nanoscopic molecules with specific shape and mechanical or electronic function. How well these properties are defined depends on the flexibility of the backbone, which can be characterized via the end-to-end distance distribution. This distribution is accessible by pulse electron paramagnetic resonance (EPR) distance measurements between spin labels that are attached at the backbone. Four sets of oligomers with different sequences of p-phenylene and ethynylene units and different spin labels were prepared using polar tagging as a tool for simple isolation of the targeted compounds. By variation of backbone length, of the sequence of p-phenylene and ethynylene units, and of the spin labels a consistent coarse-grained model for backbone flexibility of oligo(p-phenyleneethynylene)s and oligo(p-phenylenebutadiynylene)s is obtained. The relation of this harmonic segmented chain model to the worm-like chain model for shape-persistent polymers and to atomistic molecular dynamics simulations is discussed. Oligo(p-phenylenebutadiynylene)s are found to be more flexible than oligo(p-phenyleneethynylene)s, but only slightly so. The end-to-end distance distribution measured in a glassy state of the solvent at a temperature of 50 K is found to depend on the glass transition temperature of the solvent. In the range between 91 and 373 K this dependence is in quantitative agreement with expectations for flexibility due to harmonic bending. For the persistence lengths at 298 K our data predict values of (13.8 ± 1.5) nm for poly(p-phenyleneethynylene)s and of (11.8 ± 1.5) nm for poly(p-phenylenebutadiynylene)s.
机译:在构建具有特定形状和机械或电子功能的纳米分子主链时,通常使用乙炔和对亚苯基。这些属性的定义方式取决于骨干网的灵活性,可以通过端到端的距离分布来表征。通过分布在骨架上的自旋标记之间的脉冲电子顺磁共振(EPR)距离测量可以访问此分布。使用极性标记作为简单分离目标化合物的工具,制备了具有不同对亚苯基和亚乙炔基单元序列以及不同自旋标记的四组低聚物。通过改变主链长度,对亚苯基和亚乙炔基单元的序列以及自旋标记,可以得到低聚(对亚苯基乙炔基)和低聚(对亚苯基丁二炔基)的骨架柔韧性的一致的粗粒度模型。讨论了该谐波分段链模型与形状持久性聚合物的蠕虫状链模型以及原子分子动力学模拟之间的关系。发现低聚(对-亚苯基丁二炔基)比低聚(对-亚苯基乙炔基)更柔韧,但仅略微如此。发现在50K的温度下在溶剂的玻璃态下测得的端到端距离分布取决于溶剂的玻璃化转变温度。在91到373 K之间的范围内,这种依赖性与谐波弯曲导致的柔韧性预期在数量上一致。对于在298 K处的持久长度,我们的数据预测了聚(对亚苯基亚乙炔基)的(13.8±1.5)nm值和聚(对亚苯基丁二炔)的(11.8±1.5)nm的值。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第29期|p.10107-10117|共11页
  • 作者

    Gunnar Jeschke/;

  • 作者单位

    Laboratory for Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany, Max Planck Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany,;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号