首页> 外文期刊>Journal of Aircraft >Analytical Criterion for Aircraft Spin Susceptibility
【24h】

Analytical Criterion for Aircraft Spin Susceptibility

机译:飞机自旋磁化率的分析标准

获取原文
获取原文并翻译 | 示例
       

摘要

AIRCRAFT spin ismysterious, exciting, dangerous, and perhapsnthe biggest unsolved problem in flight mechanics. Spin is ancritical phenomenon for bothmilitary and general aviation airplanes,nand hence a matter of concern to aircraft designers and flight testnengineers. Abzug and Larrabee [1] provide an instructive account ofnthe history of spin research. Traditionally, spin onset was viewed asnan instability problem along the lines of wing rock, yaw departure,nnose slice and others of that ilk, leading to criteria for spin suscep-ntibility of aircraft configurations, such as the widely usedWeissmanncriterion [2]. Also of interest was the prediction of equilibrium spinncharacteristics (yaw rate r, angle of attack u0001, etc.) and identifyingncontrol combinations favoring entry into spin and recovery fromnspin, typically using approximate methods and reduced-ordernmodels [3,4]. However, with the introduction of bifurcation methodsnand the use of continuation algorithms, it became possible to worknwith the complete set of aircraft equations of motion with nonapproximation, and to numerically compute all steady states andnidentify all points of instability onset [5,6]. It became clear that spinnwas primarily a high-u0001 steady state with large angular rates whichncould itself be either stable or unstable. Entry into spin was typicallynfound to occur by way of a jump phenomenon due to onset of anninstability on a coexisting low-u0001 branch of steady states [7]. Thennature of the spin (steady or oscillatory, erect or inverted, flat or steep,nleft- or right-hand) could be predicted froma bifurcation analysis andnstrategies to recover from spin could be worked out [8].
机译:飞机旋转是神秘的,令人兴奋的,危险的,也许是空中机械中最大的未解决的问题。旋转对于军用飞机和通用航空飞机都是至关重要的现象,因此也是飞机设计师和飞行测试工程师所关注的问题。 Abzug和Larrabee [1]对自旋研究的历史提供了指导性说明。传统上,自旋发作被认为是沿着机翼岩石,偏航角偏离,鼻梁片等类似问题的南南不稳定性问题,从而导致了飞机配置的自旋敏感性,例如广泛使用的魏斯曼准则[2]。同样令人感兴趣的是平衡纺丝特性的预测(偏航率r,攻角u0001等),并确定通常有利于进入纺丝并从纺丝恢复的控制组合,通常使用近似方法和降序模型[3,4]。但是,随着分叉方法的引入和连续算法的使用,可以处理整套飞机运动方程,并且没有近似值,并且可以通过数值计算所有稳态并识别所有不稳定点[5,6]。很明显,spinn主要是具有大角速率的高u0001稳态,它本身可能是稳定的也可能是不稳定的。由于不稳定状态在共存的低u0001分支上并发不稳定,通常发现进入自旋是通过跳跃现象发生的[7]。可以通过分叉分析来预测自旋的温度(稳定或振荡,直立或倒立,平坦或陡峭,左手或右手),并可以制定出从自旋中恢复的策略[8]。

著录项

  • 来源
    《Journal of Aircraft》 |2010年第5期|p.1804-1807|共4页
  • 作者单位

    University of Illinois at Urbana-Champaign, Urbana, Illinois61801;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:06:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号