首页> 外文期刊>Journal of Aircraft >Aerostructural Optimization of Nonplanar Lifting Surfaces
【24h】

Aerostructural Optimization of Nonplanar Lifting Surfaces

机译:非平面举升面的航空结构优化

获取原文
获取原文并翻译 | 示例
       

摘要

Nonplanar lifting surfaces can lower the induced drag relative to planar surfaces by redistributing vorticity.Othernsources of drag, such as viscous drag, as well as nonaerodynamic considerations, such as structural weight, also playnan important role in assessing the overall efficiency of such lifting surfaces. In this paperwe solve a series of problemsnto find optimal nonplanar lifting surfaces and to explain the various factors and tradeoffs at play.Apanelmethod andnan equivalent beamfinite-elementmodel are used to explore nonplanar lifting surfaces,while taking into account thencoupling and design tradeoffs between aerodynamics and structures. Both single-discipline aerodynamicnoptimization andmultidisciplinary aerostructural optimization problems are investigated. The design variables arenchosen to give the lifting-surface arrangement as much freedom as possible. This is accomplished by allowing annumber of wing segments to vary their area, taper, twist, sweep, span, and dihedral, with the constraint that theynmust not intersect each other. Because of the complexity of the resulting design space and the presence of multiplenlocalminima, an augmented Lagrangian particle swarmoptimizer is used to solve the optimization problems.Whennonly aerodynamics are considered, closed lifting-surface configurations, such as the box wing and joined wing,nare found to be optimal. When aerostructural optimization is performed, a winglet configuration is found to benoptimal when the overall span is constrained, and a wing with a raked wingtip is optimal when there is no suchnconstraint.
机译:非平面的举升表面可以通过重新分配涡度来降低相对于平面的感应阻力。其他的举升来源,例如粘性阻力,以及非空气动力方面的考虑,例如结构重量,在评估此类举升表面的整体效率方面也起着重要作用。在本文中,我们解决了一系列问题,找到了最佳的非平面升力面,并解释了各种因素和权衡取舍。使用Apanel方法和等效梁有限元模型研究非平面升力面,同时考虑了空气动力学和结构之间的耦合和设计权衡。 。研究了单学科的空气动力学优化和多学科的空气动力学优化问题。选择设计变量以尽可能多地赋予提升面布置自由度。这是通过允许多个机翼段改变其面积,锥度,扭曲,后掠,跨度和二面角来实现的,并限制了它们彼此之间不得相交。由于最终设计空间的复杂性和多重局部极小值的存在,使用了增强的拉格朗日粒子群优化器来解决优化问题。当不考虑空气动力学问题时,没有发现封闭的升力面结构,例如箱形机翼和连体机翼。达到最佳。当进行航空结构优化时,当总跨度受约束时,发现小翼构型是最佳的,而当无此类约束时,带有倾斜翼尖的机翼是最佳的。

著录项

  • 来源
    《Journal of Aircraft》 |2010年第5期|p.1490-1503|共14页
  • 作者

    Peter W. Jansen;

  • 作者单位

    University of Toronto, Toronto, Ontario M3H 5T6, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:06:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号