首页> 外文期刊>Joule >Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density
【24h】

Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density

机译:高能量密度快速充电锂离子电池红色磷纳米结构电极的设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We propose that red phosphorus (P) is an ideal anode material for fast-charging lithium-ion batteries (LIBs) because of the combined advantages of high capacity (6,075 mAh cm~3) and relatively low yet safe lithiation potential (~0.7 V versus Li/Li~+). A red P/C nanocomposite has been fabricated, featuring amorphous red P nanodomains embedded in the nanopores of micrometer-scale porous conductive carbon with interior nanoscale void spaces, a conductive P-free carbon superficial layer, and a high tap density of 1.0 g cm~(-3). At an industrial-level areal capacity (3 mAh cm~(-2) or higher), a P/C electrode shows considerably better fast-charging capability than commercial graphite and Li_4Ti_5O_(12) electrodes, as well as much higher volumetric capacity and specific capacity based on the whole electrode. Meanwhile, our P/C electrode shows excellent long-term cycling stability with Coulombic efficiency of 100.0% (±0.1%) and 90% capacity retention from the 5th to 500th cycles.
机译:我们建议红磷(P)是高容量(6,075 mAh cm〜3)和相对较低但安全的锂化电位(〜0.7 V)的综合优势,是快速充电锂离子电池(LIB)的理想负极材料。相对于Li / Li〜+)。制备了红色的P / C纳米复合材料,其特征是无定形的红色P纳米域嵌入到具有内部纳米级空隙空间的微米级多孔导电碳的纳米孔中,具有无P导电碳的表面层和1.0 g cm的高振实密度〜(-3)。在工业水平的面容量(3 mAh cm〜(-2)或更高)下,P / C电极的快速充电能力比市售石墨电极和Li_4Ti_5O_(12)电极好得多,并且体积电容和基于整个电极的比容量。同时,我们的P / C电极具有出色的长期循环稳定性,从第5到第500个循环,库仑效率为100.0%(±0.1%),容量保持率为90%。

著录项

  • 来源
    《Joule》 |2019年第4期|1080-1093|共14页
  • 作者单位

    Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China,Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA,@;

    Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA,Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P.R. China,@;

    Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA;

    Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA;

    Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA;

    Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA;

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P.R. China;

    Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA,Stanford Institute for Materials and Energy Sciences, Stanford, CA 94025, USA,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Stanford, CA 94025, USA,@;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号