首页> 外文期刊>International journal of hydrogen energy >Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations
【24h】

Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations

机译:能够在平行配置和交叉配置之间切换的聚合物电解质膜燃料电池流场的设计策略

获取原文
获取原文并翻译 | 示例
       

摘要

Novel water management strategies are important to the development of next generation polymer electrolyte membrane fuel cell systems (PEMFCs). Parallel and interdigitated flow fields are two common types of PEMFC designs that have benefits and draw backs depending upon operating conditions. Parallel flow fields rely predominately on diffusion to deliver reactants and remove byproduct water. Interdigitated flow fields induce con-vective transport, known as cross flow, through the porous gas diffusion layer (GDL) and therefore are superior at water removal beneath land areas which can lead to higher cell performance. Unfortunately, forcing flow through the GDL results in higher pumping losses as the inlet pressure for interdigitated flow fields can be up to an order of magnitude greater than that for a parallel flow field. In this study a flow field capable of switching between parallel and interdigitated configurations was designed and tested. Results show, taking into account pumping losses, that using constant stoichiometry the parallel flow field results in a higher system power under low current density operation compared to the interdigitated configuration. The interdigitated flow-field configuration was observed to have lower overvoltage at elevated current densities resulting in a higher maximum power and a higher limiting current density. An optimal system power curve was produced by switching from parallel to interdigitated configuration based on which produces a higher system power at a given current density. This design method can be easily implemented with current PEMFC technology and requires minimal hardware. Some of the consequences this design has on system components are discussed.
机译:新型水管理策略对下一代聚合物电解质膜燃料电池系统(PEMFC)的开发非常重要。并行和叉指式流场是PEMFC设计的两种常见类型,它们有很多优点,并且会根据工作条件而有所减少。平行流场主要依靠扩散来输送反应物并去除副产物水。叉指式流场通过多孔气体扩散层(GDL)引起对流传输,称为横流传输,因此在陆地区域下方的除水性能优越,可导致更高的电池性能。不幸的是,强制流动通过GDL会导致较高的泵送损失,因为叉指流场的入口压力可能比平行流场的入口压力高一个数量级。在本研究中,设计并测试了能够在并行和交叉配置之间切换的流场。结果表明,考虑到泵浦损失,与叉指式配置相比,在恒定电流化学计量的情况下,平行流场在低电流密度操作下导致更高的系统功率。观察到叉指式流场配置在较高的电流密度下具有较低的过电压,从而导致较高的最大功率和较高的极限电流密度。通过从并行配置切换到交叉配置,可以产生最佳的系统功率曲线,在给定的电流密度下,该曲线可以产生更高的系统功率。该设计方法可以使用当前的PEMFC技术轻松实现,并且需要最少的硬件。讨论了该设计对系统组件的一些后果。

著录项

  • 来源
    《International journal of hydrogen energy》 |2013年第14期|5807-5812|共6页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, University of California, One Shield Ave., Davis, CA 95616-5294, United States;

    Department of Mechanical and Aerospace Engineering, University of California, One Shield Ave., Davis, CA 95616-5294, United States;

    Department of Mechanical and Aerospace Engineering, University of California, One Shield Ave., Davis, CA 95616-5294, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PEM fuel cell; flow field; parallel; interdigitated;

    机译:PEM燃料电池;流场平行叉指;
  • 入库时间 2022-08-18 00:27:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号