首页> 外文期刊>International journal of hydrogen energy >Microstructural improvements of the gradient composite material Pr_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_3/Ce_(0.8)Sm_(0.2)O_(1.9) by employing vertically aligned carbon nanotubes
【24h】

Microstructural improvements of the gradient composite material Pr_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_3/Ce_(0.8)Sm_(0.2)O_(1.9) by employing vertically aligned carbon nanotubes

机译:通过使用垂直排列的碳纳米管改善梯度复合材料Pr_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_3 / Ce_(0.8)Sm_(0.2)O_(1.9)的微观结构

获取原文
获取原文并翻译 | 示例
       

摘要

Ionic-electronic conductor composite materials are widely employed to improve the ionic conductivity of solid oxide fuel cell electrodes, making them more compatible with the solid oxide fuel cell materials. The addition of an ionic conductor implies, however, a decrease of the cathode active area for the oxygen reduction reactions. In addition, the ionic conductor particles are usually dispersed and isolated, limiting the enhanced properties to certain areas. In order to avoid this drawback and improve the ionic conductivity of the electrode, vertically aligned carbon nanotubes (VACNTs) have been synthesized and employed as template for the deposition of Sm_(0.2)Ce_(0.8)O_2 (SDC) particles. Subsequently, these SDC-VACNTs have been coated with a Pr_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_3 (PSFC) perovskite phase, leading to the formation of the desired composite material. Attending to the obtained results, it is proved that the new composite material exhibits a significantly better electrochemical performance, due to a better distribution of the ionic conductor and the burning of the carbon nanotubes (CNTs), which result in the improvement of the microstructure.
机译:离子-电子导体复合材料被广泛用于改善固体氧化物燃料电池电极的离子电导率,从而使其与固体氧化物燃料电池材料更加相容。但是,离子导体的添加意味着氧还原反应的阴极活性面积的减小。另外,离子导体颗粒通常被分散和隔离,从而将增强的特性限制在某些区域。为了避免该缺点并提高电极的离子电导率,已经合成了垂直排列的碳纳米管(VACNT),并将其用作沉积Sm_(0.2)Ce_(0.8)O_2(SDC)颗粒的模板。随后,已经用Pr_(0.6)Sr_(0.4)Fe_(0.8)Co_(0.2)O_3(PSFC)钙钛矿相涂覆了这些SDC-VACNT,从而形成了所需的复合材料。根据所获得的结果,证明了这种新的复合材料由于离子导体的更好分布和碳纳米管(CNT)的燃烧而表现出明显更好的电化学性能,这导致了微结构的改善。

著录项

  • 来源
    《International journal of hydrogen energy》 |2014年第8期|4074-4080|共7页
  • 作者单位

    Departamento de Quimica Inorgrinica, Universidad del Pai's Vasco (UPV/EHU), Barrio Sarriena s, 48940 Bilbao, Spain;

    Departamento de Quimica Inorgrinica, Universidad del Pai's Vasco (UPV/EHU), Barrio Sarriena s, 48940 Bilbao, Spain;

    Chemical Vapour Deposition Department, Leibniz Institute for Solid State Research (IFW Dresden), Heimholtzstr. 20, 01069 Dresden, Germany;

    Departamento de Quimica Inorgrinica, Universidad del Pai's Vasco (UPV/EHU), Barrio Sarriena s, 48940 Bilbao, Spain,Fachbereich Physik and WZMW, Philipps Uniuersitaet Marburg, Marburg, Germany;

    Departamento de Quimica Inorgrinica, Universidad del Pai's Vasco (UPV/EHU), Barrio Sarriena s, 48940 Bilbao, Spain;

    Chemical Vapour Deposition Department, Leibniz Institute for Solid State Research (IFW Dresden), Heimholtzstr. 20, 01069 Dresden, Germany;

    Chemical Vapour Deposition Department, Leibniz Institute for Solid State Research (IFW Dresden), Heimholtzstr. 20, 01069 Dresden, Germany;

    Departamento de Quimica Inorgrinica, Universidad del Pai's Vasco (UPV/EHU), Barrio Sarriena s, 48940 Bilbao, Spain,CIC-Energigune, Parque Tecnoldgico de Alava, Albert Einstein 48 Edificio CIC, 01510 Minano, Spain,Corresponding author. Departamento de Quimica Inorganica, Universidad del Pais Vasco (UPV/EHU), Barrio Sarriena s, 48940 Bilbao,Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SOFC; CNTs; Composite; Microstructure; Cathode;

    机译:SOFC;碳纳米管;综合;微观结构阴极;
  • 入库时间 2022-08-18 00:24:01

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号