首页> 外文期刊>International journal of hydrogen energy >Influence of membrane-type and flow field design on methanol crossover on a single-cell DMFC: An experimental and multi-physics modeling study
【24h】

Influence of membrane-type and flow field design on methanol crossover on a single-cell DMFC: An experimental and multi-physics modeling study

机译:膜类型和流场设计对单电池DMFC甲醇穿透的影响:实验和多物理场建模研究

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of a 5 cm(2) single-cell direct methanol fuel cell (DMFC) was evaluated experimentally by using two different electrolyte membranes (Fumapem (R) F-1850 and Nafion (R) N-117) for assembling the electrodes and three different types of flow field design (a unique serpentine, four parallel serpentines, four inlet serpentines). A 3D multi-physics, multi-component, two-phase, and not-isothermal model was computed with Comsole (R) Multiphysics v4.4 platform, to analyze and understand the behavior of the various configuration tested. The model consists of Maxwell-Stefan, Stokes-Brinckman, extended two-phase Darcy Law, modified Butler-Volmer and Tafel equations to simulate the performance of the DMFC. Pulse Field Gradient (PFG) NMR spectroscopy was used to get a direct measurement of the diffusion coefficients of water and methanol through the membranes. These values were then implemented in the multi-physics model. The model well reproduces the cell performance of all the MEA tested regarding polarization curves obtained under various experimental conditions (varying the inlet mass flows, the methanol concentration, the type of oxidant, the temperature). Thus, the model was used as a tool to investigate anodic overpotentials, water and methanol crossover flow rates, current density distribution at the catalyst layer/membrane interface, understanding the relationship between flow fields and cell performance. At similar specific power density, and similar anodic overpotentials, the methanol crossover flow rate is one order of magnitude lower for Fumapem (R) F-1850 than for Nafion N-117, notwithstanding the much lower thickness of the F-1850 membrane. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:通过使用两种不同的电解质膜(Fumapem(R)F-1850和Nafion(R)N-117)组装电极,并通过实验评估了5 cm(2)单电池直接甲醇燃料电池(DMFC)的性能。三种不同类型的流场设计(一个独特的蛇形管,四个平行蛇形管,四个入口蛇形管)。使用Comsole(R)Multiphysics v4.4平台计算了3D多物理场,多成分,两相和非等温模型,以分析和理解各种测试配置的行为。该模型由Maxwell-Stefan,Stokes-Brinckman,扩展的两相达西定律,改进的Butler-Volmer和Tafel方程组成,以模拟DMFC的性能。脉冲场梯度(PFG)NMR光谱用于直接测量水和甲醇通过膜的扩散系数。这些值然后在多物理场模型中实现。该模型很好地再现了在各种实验条件(改变入口质量流量,甲醇浓度,氧化剂类型,温度)下获得的有关极化曲线的所有MEA测试的电池性能。因此,该模型被用作研究阳极超电势,水和甲醇交叉流速,催化剂层/膜界面处电流密度分布,了解流场与电池性能之间关系的工具。在相似的比功率密度和相似的阳极超电势下,尽管F-1850膜的厚度要低得多,但Fumapem(R)F-1850的甲醇穿越流速比Nafion N-117低一个数量级。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号