首页> 外文期刊>International journal of hydrogen energy >Design of an integrated biomass gasification and proton exchange membrane fuel cell system under self-sustainable conditions: Process modification and heat-exchanger network synthesis
【24h】

Design of an integrated biomass gasification and proton exchange membrane fuel cell system under self-sustainable conditions: Process modification and heat-exchanger network synthesis

机译:可自我维持的一体化生物质气化和质子交换膜燃料电池系统的设计:工艺改进和热交换器网络综合

获取原文
获取原文并翻译 | 示例
           

摘要

The design and analysis of an integrated biomass gasification and PEMFC system to generate heat and power demand for residential applications are presented in this study. Two biomass gasification configurations using sawdust as a feedstock are considered: air steam biomass gasification (AS-BG-PEMFC) and steam-only biomass gasification (SO-BG-PEMFC). The biomass processing consists of a biomass gasification which is used to produce H-2-rich gas (syngas), followed by high- and low-temperature shift reactors and a preferential oxidation reactor. Pinch analysis is performed to evaluate and design a heat-exchanger network in the two biomass gasification systems. The remaining useful heat is recovered and employed for a reactant preparation step and for a heating utility system in a household. The simulation results indicate that the SO-BG-PEMFC generates syngas with a greater H2 content than the AS-BG-PEMFC, resulting in higher fuel processor and electric efficiencies. However, the AS-BG-PEMFC provides a higher thermal efficiency because a high temperature gaseous product is obtained, and more energy is thereby recovered to the system. The total heat and power efficiencies of the AS-BG-PEMFC and the SO-BG-PEMFC are 83% and 70%, respectively. The Sankey diagram of energy flows reveals that the performance improvement depends entirely on the utilization of useful energy in the exhaust gas. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:这项研究提出了一个综合的生物质气化和PEMFC系统的设计和分析,以产生住宅应用的热量和功率需求。考虑了使用锯末作为原料的两种生物质气化配置:空气蒸汽生物质气化(AS-BG-PEMFC)和仅蒸汽生物质气化(SO-BG-PEMFC)。生物质处理包括用于产生富H-2气体(合成气)的生物质气化,然后是高温和低温变换反应器以及优先氧化反应器。进行捏分析以评估和设计两个生物质气化系统中的热交换器网络。剩余的有用热量被回收并用于反应物制备步骤和家庭中的供热系统。仿真结果表明,SO-BG-PEMFC产生的合成气具有比AS-BG-PEMFC更高的H2含量,从而提高了燃料处理器和电效率。但是,AS-BG-PEMFC提供了更高的热效率,因为获得了高温气态产物,从而将更多的能量回收到系统中。 AS-BG-PEMFC和SO-BG-PEMFC的总热效率和功率效率分别为83%和70%。 Sankey能量流图表明,性能的提高完全取决于废气中有用能量的利用。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号