首页> 外文期刊>International journal of hydrogen energy >Highly efficient and stable bifunctional electrocatalyst for water splitting on Fe-Co_3O_4/ carbon nanotubes
【24h】

Highly efficient and stable bifunctional electrocatalyst for water splitting on Fe-Co_3O_4/ carbon nanotubes

机译:Fe-Co_3O_4 /碳纳米管上高效高效的水分解双功能电催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

Replacement of precious platinum (Pt) or ruthenium oxide (RuO2) catalysts with efficient, cheap and durable electrocatalysts from earth-abundant elements bifunctional alternatives would be significantly beneficial for key renewable energy technologies including overall water splitting and hydrogen fuel cells. Despite tremendous efforts, developing bifunctional catalysts with high activity at low cost still remain a great challenge. Here, we report a nanomaterial consisting of core-shell-shaped Fe-Co3O4 grown on carbon nano tubes (Fe-Co3O4/CNTs) and employed as a bifunctional catalyst for the simultaneous electrocatalysts on oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The Fe Co3O4/CNTs electrocatalyst outperforms the commercial RuO2 catalyst in activity and stability for OER and approaches the performance of Pt/C for HER. Particularly, it shows superior electrocatalytic activity with lowering overpotentials of 120 mV at 10 mA cm(-2) for HER and of 300 mV at 10 mA cm(-2) for OER in 1 M KOH solution. The superior catalytic activity arises from unique core-shell structure of Fe-Co3O4 and the synergetic chemical coupling effects between Fe-Co3O4 and CNTs. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:用有效,廉价和耐用的双色替代物替代高效,廉价和耐用的电催化剂来代替贵重的铂(Pt)或氧化钌(RuO2)催化剂,对于包括整体水分解和氢燃料电池在内的关键可再生能源技术将大有裨益。尽管付出了巨大的努力,但是以低成本开发具有高活性的双功能催化剂仍然是巨大的挑战。在这里,我们报告了一种纳米材料,该材料由在碳纳米管上生长的核-壳形Fe-Co3O4(Fe-Co3O4 / CNTs)构成,并用作双功能催化剂,用于同时发生氧释放反应(OER)和氢释放反应的电催化剂(她)。 Fe Co3O4 / CNTs电催化剂在OER的活性和稳定性方面均优于商用RuO2催化剂,并接近HER的Pt / C性能。特别是,它显示出优异的电催化活性,在1 M KOH溶液中,对于HER,在10 mA cm(-2)时的过电势降低,对于OER,在10 mA cm(-2)时过电势降低300 mV。 Fe-Co3O4独特的核壳结构以及Fe-Co3O4与CNT之间的协同化学偶联作用产生了优异的催化活性。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号