...
首页> 外文期刊>International journal of hydrogen energy >Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations
【24h】

Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations

机译:氢气和一氧化碳对高温氧化铁氧化铁还原行为的影响:对还原气体浓度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The purposes of this study are to reduce Fe2O3 using hydrogen (H-2) and carbon monoxide (CO) gases at a high temperature zone (500 degrees C-900 degrees C) by focusing on the influence of reduction gas concentrations. Reduction behavior of hematite (Fe2O3) at high temperature was examined using temperature programmed reduction (TPR) under non-isothermal conditions with the presence of 10% H-2/N-2, 20% H-2/N-2, 10% CO/N-2, 20% CO/N-2 and 40% CO/N-2. The TPRCO results indicated that the first and second reduction peaks of Fe2O3 at a temperature below 660 degrees C appeared rapidly when compared to TPRH2. However, TPRH2 exhibited a better reduction in which Fe2O3 entirely reduced to Fe at temperature 800 degrees C (20% H-2) without any remaining of wustite (FeO) whereas a temperature above 900 degrees C is needed for a complete reductionin 10% H-2/N-2, 10% and 20% CO/N-2. Furthermore, the reduction of hematite could be improved when increasing CO and H-2 concentrations since reduction profiles were shifted to a lower temperature. Thermodynamic calculation has shown that enthalpy change of reaction (Delta Hr) for all phases transformation in CO atmosphere is significantly lower than in H-2. This disclosed that CO is the best reductant as it is a more exothermic, more spontaneous reaction and able to initiate the reduction at a much lower temperature than H-2 atmosphere. Nevertheless, the reduction of hematite using CO completed at a temperature slightly higher compared to H-2. It is due to the presence of an additional carburization reaction which is a phase transformation of wustite to iron carbide (FeO - Fe3C). Carburization started at the end of the second stage reduction at 600 degrees C and 630 degrees C under 20% and 40% CO, respectively. Therefore, reduction by CO encouraged the formation of carbide, slower the reduction and completed at high temperature. XRD analysis disclosed the formation of austenite during the final stage of a reduction under further exposure with high CO concentration. Overall, less energy consumption needed during the first and second stages of reduction by CO, the formation of iron carbide and austenite were enhanced with the presence of higher CO concentration. Meanwhile, H-2 has stimulated the formation of puremetallic iron(Fe), completed the reduction faster, considered as the strongest reducing agent than CO and these are effective at a higher temperature. Proposed iron phase transformation under different reducing agent concentrations are as followed: (a) 10% H-2, 20% H-2 and 10% C; Fe2O3 - Fe3O4 - FeO - Fe, (b) 20% CO; Fe2O3 - Fe3O4 - FeO - Fe3C - Fe and(c) 40% CO; Fe2O3 - Fe3O4 - FeO - Fe3C - Fe - F,C (austenite). (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本研究的目的是通过聚焦降低气体浓度的影响,在高温区(500℃-900℃)下使用氢气(H-2)和一氧化碳(CO)气体来减少Fe2O3。在非等温条件下在存在10%H-2 / N-2,20%H-2 / N-2,10%的情况下,在非等温条件下的温度编程(TPR)在高温下进行赤温(Fe2O3)的缩减行为CO / N-2,20%CO / N-2和40%CO / N-2。与TPRH2相比,TPRCO结果表明Fe2O3在低于660℃的温度下的第一和第二减少峰。然而,TPRH2表现出更好的减少,其中Fe2O3在800℃(20%H-2)温度下的Fe2O3完全降低到Fe,而无需任何诸如诸如威尔特(Feo),而完全证明10%H需要900℃的温度-2 / N-2,10%和20%CO / N-2。此外,由于减少型材转移到较低温度,因此在增加CO和H-2浓度时,可以改善赤铁矿的还原。热力学计算表明,在CO气氛中所有相转化的反应(Delta Hr)的焓变化显着低于H-2。这公开了CO是最好的还原剂,因为它是更加放热,更自发的反应,并且能够在比H-2气氛更低的温度下引发降低。然而,与H-2相比,使用CO在温度下完成的CO的赤铁矿还原。这是由于存在额外的渗碳反应,这是硅化铁(Feo - & Fe3C)的狼人的相变。渗碳在第二阶段结束时开始于600℃和630℃,分别为20%和40%Co。因此,通过同期减少鼓励形成碳化物,减少并在高温下完成。 XRD分析公开了在高Co浓度的进一步暴露下减少的最终阶段形成奥氏体的形成。总体而言,通过较高Co浓度的存在,增强了碳化铁和奥氏体的第一和第二阶段期间所需的能耗较小。同时,H-2刺激了纯铁(Fe)的形成,完成了更快的速度,被认为是最强的还原剂而不是CO,这些是在较高温度下有效的。所提出的在不同还原剂浓度下的铁相变化如下:(a)10%H-2,20%H-2和10%C; Fe2O3 - & Fe3O4 - & feo - & Fe,(b)20%co; Fe2O3 - & Fe3O4 - & feo - & FE3C - & Fe和(c)40%co; Fe2O3 - & Fe3O4 - & feo - & Fe3c - & Fe - & F,C(奥氏体)。 (c)2020氢能量出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号