首页> 外文期刊>International journal of hydrogen energy >In situ visualization of biofilm formation in a microchannel for a microfluidic microbial fuel cell anode
【24h】

In situ visualization of biofilm formation in a microchannel for a microfluidic microbial fuel cell anode

机译:用于微流体微生物燃料电池阳极的微通道中生物膜形成的原位可视化

获取原文
获取原文并翻译 | 示例
           

摘要

A novel in situ approach is proposed to visualize biofilm formation in the microchannel for the microfluidic microbial fuel cell (MMFC) anode, which could reflect a more precise biofilm formation during start-up process in real-time. A microchannel reactor was designed and fabricated based on a transparent indium-tin-oxide (ITO) conductive membrane. In situ visualization of biofilm formation under various anolyte flow rates was captured by a phase contrast microscope combined with a custom long working distance objective. The results show that no steady biofilm is formed on the surface of anode under low flow rate of 50 mL min-1 because of the insufficient nutrient supply. With increasing the anolyte flow rate, more attached bacteria on the anode surface and denser biofilm are observed in the microchannel. Less bacteria are attached on the surface of anode along flow direction due to the entrance effect. However, denser biofilm leads to larger mass transfer resistance of the anolyte and product in biofilm. Therefore, a superior bioelectrochemical performance is yielded for the biofilm formed under a moderate flow rate during start-up process.(c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:提出了一种新颖的方法,以在微流体微生物燃料电池(MMFC)阳极中的微通道中的生物膜形成可视化,这可以在实时启动过程中反映更精确的生物膜形成。基于透明铟 - 锡氧化物(ITO)导电膜设计和制造微通道反应器。通过相位造影显微镜与定制长工作距离目标相结合,捕获各种阳离子形成的原位可视化。结果表明,由于营养供应不足,在50mL MIN-1的低流速下,在阳极表面上没有形成稳定的生物膜。随着阳极电解液流速的增加,在微通道中观察到阳极表面上的更多附着细菌和更密集的生物膜。由于入口效应,较少的细菌在阳极的表面上附着在阳极的表面上。然而,密度生物膜导致生物膜的阳极电解液和产物的较大传质阻力。因此,在启动过程期间在适度的流速下形成的生物膜产生优异的生物电化学性能。(c)2020氢能量出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2021年第27期|14651-14658|共8页
  • 作者单位

    Chongqing Univ Key Lab Low Grade Energy Utilizat Technol & Syst Minist Educ Chongqing 400030 Peoples R China|Chongqing Univ Sch Energy & Power Engn Inst Engn Thermophys Chongqing 400030 Peoples R China;

    Chongqing Univ Sch Energy & Power Engn Inst Engn Thermophys Chongqing 400030 Peoples R China;

    Chongqing Univ Key Lab Low Grade Energy Utilizat Technol & Syst Minist Educ Chongqing 400030 Peoples R China|Chongqing Univ Sch Energy & Power Engn Inst Engn Thermophys Chongqing 400030 Peoples R China;

    Chongqing Univ Key Lab Low Grade Energy Utilizat Technol & Syst Minist Educ Chongqing 400030 Peoples R China|Chongqing Univ Sch Energy & Power Engn Inst Engn Thermophys Chongqing 400030 Peoples R China;

    Chongqing Univ Key Lab Low Grade Energy Utilizat Technol & Syst Minist Educ Chongqing 400030 Peoples R China|Chongqing Univ Sch Energy & Power Engn Inst Engn Thermophys Chongqing 400030 Peoples R China;

    Chongqing Univ Key Lab Low Grade Energy Utilizat Technol & Syst Minist Educ Chongqing 400030 Peoples R China|Chongqing Univ Sch Energy & Power Engn Inst Engn Thermophys Chongqing 400030 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microfluidic; Miniature microbial fuel cell; Laminar flow; Biofilm; Microchannel;

    机译:微流体;微型微生物燃料电池;层流;生物膜;微通道;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号