...
首页> 外文期刊>International journal of hydrogen energy >Thermodynamic modeling and exergy analysis of proton exchange membrane fuel cell power system
【24h】

Thermodynamic modeling and exergy analysis of proton exchange membrane fuel cell power system

机译:质子交换膜燃料电池电力系统的热力学建模与探测分析

获取原文
获取原文并翻译 | 示例

摘要

The proton exchange membrane (PEM) fuel cell (PEMFC) is equipped with a series of auxiliary components which consume considerable amount of energy. It is necessary to investigate the design and operation of the PEMFC power system for better system performance. In this study, a typical PEMFC power system is developed, and a thermodynamic model of the system is established. Simulation is carried out, and the power distribution of each auxiliary component in the system, the net power and power efficiency of the system are obtained. This power system uses cooling water for preheating inlet gases, and its energy-saving effect is also verified by the simulation. On this basis, the exergy analysis is applied on the system, and the indexes of the system exergy loss, exergy efficiency and ecological function are proposed to evaluate the system performance. The results show that fuel cell stack and heat exchanger are the two components that cause the most exergy loss. Furthermore, the system performance under various stack inlet temperatures and current densities is also analyzed. It is found that the net power, energy efficiency and exergy efficiency of the system reach the maximum when the stack inlet temperature is about 348.15 K. The ecological function is maintained at a high level when the stack inlet temperature is around 338.15 K. Lower current density increases the system ecological function and the power and exergy efficiencies, and also helps decrease the system exergy loss, but it decreases the system net power. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:质子交换膜(PEM)燃料电池(PEMFC)配备了一系列辅助部件,其消耗大量能量。有必要研究PEMFC电力系统的设计和运行,以实现更好的系统性能。在本研究中,开发了一种典型的PEMFC电力系统,并且建立了系统的热力学模型。进行了模拟,并且获得了系统中每个辅助部件的功率分布,获得了系统的净功率和功率效率。该电力系统使用用于预热入口气体的冷却水,并通过模拟验证其节能效果。在此基础上,提出了在系统上应用了Deerteny分析,并提出了系统丧失损失的指标,高度效率和生态功能来评估系统性能。结果表明,燃料电池堆和热交换器是导致最漏洞损失的两个组件。此外,还分析了各种堆叠入口温度和电流密度下的系统性能。结果发现,当堆栈入口温度约为348.15k时,系统的净功率,能量效率和高度效率达到最大值。当堆叠入口温度约为338.15k时,生态功能保持在高电平。密度提高了系统生态功能和功率和漏洞效率,并有助于降低系统漏洞,但它降低了系统净功率。 (c)2019氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号