首页> 外文期刊>International journal of hydrogen energy >Hydrogen production via catalytic pulsed plasma conversion of methane: Effect of Ni-K_2O/A1_2O_3 loading, applied voltage, and argon flow rate
【24h】

Hydrogen production via catalytic pulsed plasma conversion of methane: Effect of Ni-K_2O/A1_2O_3 loading, applied voltage, and argon flow rate

机译:通过催化脉冲等离子体转化甲烷的氢气产生:Ni-K_2O / A1_2O_3负载,施加电压和氩流量的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Despite industrial application of methane as an energy source and raw material for chemical manufacturing, it is a potent heat absorber and a strong greenhouse gas. Evidently reduction of methane emission especially in the natural gas sector is essential. Methane to hydrogen conversion through non-thermal plasma technologies has received increasing attention. In this paper, catalytic methane conversion into hydrogen is experimentally studied via nano-second pulsed DBD plasma reactor. The effect of carrier gas flow, applied voltage, and commercial Ni-K2O/Al2O3 catalyst loading on methane conversion, hydrogen production, hydrogen selectivity, discharge power, and energy efficiency are studied. The results showed that in the plasma alone system, the highest methane conversion and hydrogen production occurs at argon flow rate of 70 mL/min. Increase in the applied voltage increases the methane conversion and hydrogen production while it decreases the energy efficiency. Presence of 1 g Ni-K2O/Al2O3 catalyst shifts the optimum voltage for methane conversion and hydrogen production to 8 kV, reduces the required power, and increases the energy efficiency of the process. Finally in the catalytic plasma mode the optimum process condition occurs at the argon flow rate of 70 mL/min, applied voltage of 8 kV, and catalyst loading of 6 g. Compared with the optimum condition in the absence of catalyst, presence of 6 g Ni-K2O/Al2O3 catalyst increased the methane conversion, hydrogen production, hydrogen selectivity and energy efficiency by 15.7, 22.5, 7.1, and 40% respectively. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:尽管甲烷的工业应用为化学制造的能源和原料,但它是一种有效的吸热器和强烈的温室气体。显然,特别是在天然气部门中的甲烷排放是必不可少的。通过非热等离子体技术甲烷以氢转换得到越来越受到关注。本文通过纳米第二脉冲DBD等离子体反应器实验研究了催化甲烷转化为氢气。研究了载气流量,所施加的电压,并在甲烷转化,制氢,氢选择性,放电功率,和能源效率的商业镍K2O / Al2O3催化剂上负载的作用。结果表明,在血浆单独的系统中,最高的甲烷转化和氢气产生在氩气流速积为70ml / min时发生。施加电压的增加会增加甲烷转化和氢气产生,同时降低能量效率。 1g Ni-K 2 O / Al 2 O 3催化剂的存在将甲烷转化和氢气产生的最佳电压转移到8kV,降低所需的功率,并提高该方法的能量效率。最后在催化等离子体模式中,最佳过程状况发生在70ml / min的氩流量,施加的电压为8kV,催化剂负载量为6g。与在不存在催化剂的最佳条件比较,6克的Ni-K2O / Al2O3催化剂的存在下通过15.7,22.5,7.1增加了甲烷转化率,制氢,氢选择性和能源效率,和分别为40%。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号