首页> 外文期刊>International journal of hydrogen energy >Coupled hydrodynamic and kinetic model of liquid metal bubble reactor for hydrogen production by noncatalytic thermal decomposition of methane
【24h】

Coupled hydrodynamic and kinetic model of liquid metal bubble reactor for hydrogen production by noncatalytic thermal decomposition of methane

机译:甲烷非催化热分解制氢的液态金属气泡反应器水动力和动力学耦合模型

获取原文
获取原文并翻译 | 示例
       

摘要

Industrial-scale implementation of liquid metal bubble reactors (LMBRs) to produce hydrogen by methane decomposition will require large gas holdups (e.g., 20-30 vol%) and elevated gas pressures (>20 bar) to allow for practical reactor sizes. A realistic reactor design must account for the coupling between reaction kinetics and hydrodynamic effects. The gas holdup is predicted from the superficial gas velocity with a drift flux model that was experimentally corroborated in gas-molten metal mixtures. Large superficial gas velocities (>0.40 m s(-1)) are required to achieve gas holdups of about 25 vol% in liquid metal baths (LMBs). A noncatalytic kinetic model is developed to provide thermodynamically consistent decomposition rates at methane conversions approaching equilibrium. The coupled model optimizes the LMB dimensions (diameter and length) and the inlet pressure to minimize the volume of liquid metal when the hydrogen production rate, bath temperature, methane conversion, metal composition, and maximum gas holdup are specified. For example, 200 kt a(-1) of hydrogen can be produced in an LMBR containing at least 96.5 m(3) of molten tin held at 1100 degrees C in a bath measuring 3.50 m in diameter and 14.3 m in length, with an inlet methane pressure of 57.8 bar resulting in an average gas holdup of 29.7 vol% and a methane conversion of 65%. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:工业规模的液态金属气泡反应器(LMBR)通过甲烷分解产生氢气的过程将需要大量的气体滞留量(例如20-30%(体积))和更高的气体压力(> 20 bar),以适应实际的反应器尺寸。现实的反应堆设计必须考虑到反应动力学和流体动力学效应之间的耦合。气体滞留率是根据表面气体速度和漂移通量模型预测的,该模型在气体熔融金属混合物中得到了实验验证。需要大的表观气体速度(> 0.40 m s(-1))才能在液态金属浴(LMB)中实现约25 vol%的气体滞留率。建立了非催化动力学模型,以在甲烷转化接近平衡时提供热力学一致的分解速率。当指定了氢气产生速率,熔池温度,甲烷转化率,金属成分和最大气体滞留量时,耦合模型可优化LMB尺寸(直径和长度)和入口压力,以最大程度减少液态金属的体积。例如,可以在LMBR中生产200 kt a(-1)的氢,该LMBR中至少有96.5 m(3)的熔融锡保持在1100℃,直径为3.50 m,长度为14.3 m,入口甲烷压力为57.8 bar,导致平均气体滞留率为29.7 vol%,甲烷转化率为65%。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号