首页> 外文期刊>International journal of hydrogen energy >High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media
【24h】

High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media

机译:基于Fe / N共掺杂碳化物衍生的碳和碳纳米管复合材料的高性能催化剂,用于酸性介质中的氧还原反应

获取原文
获取原文并翻译 | 示例
       

摘要

The key issue of modern electrochemical technology is clean energy production and storage. Proton exchange membrane fuel cells (PEMFC) offer a way to produce electricity from hydrogen, but are hindered by the sluggish reduction of oxygen into water on the cathode, which requires Pt/C catalysts. Iron-nitrogen-carbon (Fe-N-C) catalysts have been shown in recent years to be viable alternatives. Here, we present highly performing Fe-N-C catalysts based on composite materials synthesised from carbide-derived carbon (CDC) and carbon nanotubes (CNT). B4C, Mo2C and TiC, which yield CDC materials with different porosity were chosen as the starting carbides, which are then doped with Fe, N and composited with CNTs using ball-milling and pyrolysis. 1,10-phenanthroline (Phen) and dicyandiamide (DCDA) serve as the nitrogen sources and Fe(II)acetate as the iron source. The catalyst derived from TiC shows a remarkable half-wave potential for oxygen reduction of 0.8 V vs RHE, which shifts negative 36 mV during 5000 potential cycles at 70 degrees C, while the composite material derived from it is more stable with a shift of only 15 mV during the same period. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:现代电化学技术的关键问题是清洁能源的生产和存储。质子交换膜燃料电池(PEMFC)提供了一种由氢气产生电能的方法,但由于将阴极上的氧气缓慢还原为水而受到阻碍,这需要Pt / C催化剂。近年来,铁-氮-碳(Fe-N-C)催化剂已被证明是可行的替代品。在这里,我们介绍了基于由碳化物衍生碳(CDC)和碳纳米管(CNT)合成的复合材料的高性能Fe-N-C催化剂。选择产生孔隙率不同的CDC材料的B4C,Mo2C和TiC作为起始碳化物,然后将其掺入Fe,N并通过球磨和热解与CNT混合。 1,10-菲咯啉(Phen)和双氰胺(DCDA)作为氮源,乙酸Fe(II)作为铁源。源自TiC的催化剂显示出显着的半波氧还原电位(相对于RHE)为0.8 V,在70摄氏度下的5000个电位循环中,其负离子位移为36 mV,而衍生自其的复合材料更稳定,仅发生位移同期为15 mV。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号