...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Lagrangian investigations of vortex dynamics in time-dependent cloud cavitating flows
【24h】

Lagrangian investigations of vortex dynamics in time-dependent cloud cavitating flows

机译:拉格朗日研究时空云空化流中的涡旋动力学

获取原文
获取原文并翻译 | 示例

摘要

Lagrangian investigations of vortex dynamics, including Lagrangian Coherent Structures (LCS) and particle trajectory, are conducted to highlight the mechanisms of cloud cavitating flows around a Clark-Y hydrofoil. Numerical simulations are performed using a transport equation-based cavitation model and the large eddy simulation (LES) approach. Good agreements are observed between numerical predictions and experimental measurements, including time-averaged turbulence statistics, velocity, vorticity profiles and the periods of unsteady shedding process of the vortex structures near the trailing edge. Besides, present numerical predictions are capable of capturing the unsteadiness of cloud cavitation, including the initiation, growth toward the trailing edge and subsequent shedding of cavities. Based on the Lagrangian analysis of vortex dynamics in non-cavitating flows, two LCSs, namely LE-LCS and TE-LCS, are defined. In cloud cavitating flows, distributions of the two LCSs in different cavitation developing stages illustrate different behaviors of vortex structures. (a) In the attached sheet cavity growing stage, the LE-LCS extends to the trailing edge, which implies the expansion of the attached sheet cavity, and the TE-LCS rolls up and extends downstream, which implies the detachment of cloud cavity. In addition, particle tracers indicate that the Leading edge vortex (LEV) is enhanced by the attached sheet cavity, and there is no direct interaction between attached cavity's expansion and cloud cavity's shedding. (b) In the re-entrant jet developing stage, the LE-LCS and TE-LCS connect together near the middle of the hydrofoil, which implies that two vortex structures mix together inside of the stable attached cavity. Particle tracers clearly show the re-entrant jet flow and the unsteadiness of the vortex structures inside of the stable attached cavity. Furthermore, trapped particles tracers indicate the semi-Vortex Street in the wake, which is induced by the resistance effect from the stable cavity on the partial shedding of the LEV. (c) In the cloud cavity shedding stage, no connection between the LE-LCS and TE-LCS can be observed near the middle part of the hydrofoil, which implies the break-up of vortex structures inside the attached cavity. Meanwhile, particle tracers show the breakup of vortex structure inside the attached cavity, as well as the shedding process of the rear part, which is enhanced by the detached cloud cavity.
机译:拉格朗日研究了涡旋动力学,包括拉格朗日相干结构(LCS)和粒子轨迹,以突出Clark-Y水翼周围云空化流的机理。使用基于运输方程的空化模型和大涡模拟(LES)方法进行数值模拟。在数值预测和实验测量之间观察到良好的一致性,包括时间平均湍流统计,速度,涡度分布以及后缘附近涡旋结构的不稳定脱落过程的周期。此外,目前的数值预测能够捕获云空化的不稳定性,包括开始,向后缘生长以及随后的空化。基于非空化流中涡旋动力学的拉格朗日分析,定义了两个LCS,即LE-LCS和TE-LCS。在空化流中,两个LCS在不同的空化发展阶段的分布说明了涡旋结构的不同行为。 (a)在附着的片腔生长阶段,LE-LCS延伸到后缘,这意味着附着的片腔膨胀,而TE-LCS向上滚动并向下游延伸,这意味着云腔分离。另外,粒子示踪剂表明前缘涡流(LEV)被附着的片状腔增强,并且附着的腔的膨胀和云腔的脱落之间没有直接的相互作用。 (b)在折返射流发展阶段,LE-LCS和TE-LCS在水翼的中部附近连接在一起,这意味着两个涡旋结构在稳定的附着腔内部混合在一起。粒子示踪剂清楚地显示出折返的射流和稳定附着腔内部漩涡结构的不稳定性。此外,捕获的粒子示踪剂指示尾流中的半涡街,这是由稳定腔对LEV的部分脱落产生的阻力效应引起的。 (c)在云腔脱落阶段,在水翼中部附近看不到LE-LCS和TE-LCS之间的连接,这意味着附着腔内部的涡旋结构破裂。同时,粒子示踪剂显示了附着腔内部的涡旋结构破裂,以及后部的脱落过程,这通过分离的云腔得以增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号