首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks
【24h】

Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks

机译:板翅式散热器混合对流换热和流体流动特性的数值和实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

This study applies three-dimensional computational fluid dynamics (CFD) commercial software along with the inverse method and experimental data to determine the mixed convection heat transfer and fluid flow characteristics of a plate-fin heat sink in a wind tunnel. The inverse method of the finite difference method along with the experimental temperature data is applied to determine the unknown heat transfer coefficient on the fin. Commercial software combined with various flow models is used to obtain air temperature and velocity profiles, heat transfer coefficient on fins, fin surface temperature and pressure drop. More accurate heat transfer and fluid flow characteristics can be obtained by the appropriate flow model and the number of grid points, if the resulting heat transfer coefficient and the fin temperature at each measurement location are close to the inverse results of the heat transfer coefficient and the experimental temperature data, respectively. The interesting finding is that the results obtained by the RNG k-ε turbulence model are more accurate than those by the laminar flow model. FLUENT 4 has better accuracy than FLUENT 15 along with standard wall functions and enhanced wall treatment. In addition, the total number of grid points needs to be increased with increasing air velocity and fin spacing. The dimensionless wall distance can vary with air velocity. The pressure drop has a large variation in the specific range of the fin spacing, and the secondary vortices can be found at both corners of the wind tunnel. It is worth mentioning that the strength of the secondary flow decreases with decreasing fin spacing. The effect of the flow model, near-wall treatment, FLUENT version and grid points on the results obtained cannot be ignored. To our knowledge, few researchers have used similar methods to investigate this problem in the open literature. The two proposed correlations are closer to the obtained inverse and numerical results than the existing results.
机译:本研究使用三维计算流体动力学(CFD)商业软件以及逆方法和实验数据来确定风洞中板翅式散热器的混合对流传热和流体流动特性。有限差分法的逆方法与实验温度数据一起用于确定翅片上的未知传热系数。商业软件与各种流量模型相结合,用于获得空气温度和速度曲线,散热片上的传热系数,散热片表面温度和压降。如果在每个测量位置得到的传热系数和散热片温度接近于传热系数和换热器的逆结果,则可以通过适当的流动模型和网格点数获得更准确的传热和流体流动特性。实验温度数据。有趣的发现是,与层流模型相比,RNGk-ε湍流模型获得的结果更准确。 FLUENT 4具有比FLUENT 15更好的精度,并具有标准的墙功能和增强的墙处理能力。另外,网格点的总数需要随着空气速度和翅片间距的增加而增加。无因次壁距可以随空气速度而变化。压降在翅片间距的特定范围内有很大的变化,并且在风洞的两个角都可以发现次级涡旋。值得一提的是,二次流的强度随着翅片间距的减小而减小。流动模型,近壁处理,FLUENT版本和网格点对获得的结果的影响不容忽视。据我们所知,很少有研究者使用类似的方法来研究公开文献中的这个问题。与现有结果相比,所提出的两个相关性更接近获得的逆和数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号