首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical analysis for electromagnetic field influence on heat transfer behaviors in cold crucible used for directional solidification
【24h】

Numerical analysis for electromagnetic field influence on heat transfer behaviors in cold crucible used for directional solidification

机译:电磁场对定向凝固冷坩埚传热性能影响的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

Cold crucible directional solidification (CCDS) is the technique that the materials in the segmented water-cooled crucible are induction heated and heat transfer controlled by electromagnetic field for directional solidifying crystals without contamination. In order to control crystal growth by the CCDS efficiently, mathematical analysis of heat transfer during the CCDS process is presented by means of a combined electromagnetic, fluid and thermal model. A 3-D model is established and verified to investigate the characteristics of heat transfer in the melt, which considers the coupled effects of the shaped melt and the electromagnetically driven flow on the temperature field and the shape of solid–liquid (S/L) interface. The shaped melt by electromagnetic pressure along with the induction heat in the skin layer reduce and compensate the radial heat loss, which could decrease the radial temperature gradient in the melt with increasing input powers. A vigorous three-dimensional melt flow consisting of meridional flow and azimuthal flow is induced in the melt, which improves the uniformity of the temperature field and decreases the deflection of S/L interface in the center of melt. The solidification front changes from ‘W’ shape to planar when the power reaches 39 kW. Based on the above results and analysis, TiAl alloys are successfully directionally solidified by the CCDS method with planar S/L interface, and the growth direction of columnar crystals are nearly paralleled.
机译:冷坩埚定向凝固(CCDS)技术是将分段水冷坩埚中的材料感应加热并通过电磁场控制传热,从而定向凝固晶体而不会受到污染。为了通过CCDS有效地控制晶体生长,通过组合的电磁,流体和热模型对CCDS过程中的传热进行了数学分析。建立并验证了一个3-D模型以研究熔体中的传热特性,该模型考虑了成型熔体和电磁驱动流对温度场和固液形状(S / L)的耦合影响接口。电磁压力和表皮层中的感应热一起使成形的熔体减少并补偿了径向热损失,这可以随着输入功率的增加而降低熔体中的径向温度梯度。熔体中产生了由子午流和方位角流组成的剧烈的三维熔体流,这改善了温度场的均匀性,并减小了熔体中心处S / L界面的偏转。当功率达到39 kW时,凝固前沿从“ W”形变为平面。根据以上结果和分析,采用平面S / L界面的CCDS方法成功地定向凝固了TiAl合金,并且柱状晶体的生长方向几乎平行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号