首页> 外文期刊>International Journal of Heat and Mass Transfer >Multi-objective optimization of a liquid cooled battery module with collaborative heat dissipation in both axial and radial directions
【24h】

Multi-objective optimization of a liquid cooled battery module with collaborative heat dissipation in both axial and radial directions

机译:具有轴向和径向的协作散热的液冷电池模块的多目标优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, numerical investigation and multi-objective optimization of a liquid cooled battery module with collaborative heat dissipation in both axial and radial directions are presented. In the battery module, 11×10 cylindrical batteries are arranged in square array on the cold plate, allowing axially downward heat dissipation. Besides, the upper parts of the batteries are connected radially with a common heat spreader plate, which is then connected to the bottom cold plate through thermal columns adjacent to the batteries, forming the thermal path in radial direction. Comparing with the conventional design configuration without heat dissipation structure, the maximum temperature of the present configuration (Baseline) is reduced by 42.10%, whereas the temperature difference is unfavorably increased by about 11.37%. Single-factor analysis is first conducted to identify the major influence variables. Then, the multi-objective optimizations are conducted in two steps to optimize the structure by minimizing the optimization objectives such as the maximum temperature, temperature difference and the pressure drop. After Step 2 optimization, the temperature difference of the battery module is reduced to 4.28 °C, providing good fitting agreement with the numerical simulation within 1.52%. The numerical simulations are also compared with the experiment and the discrepancy in battery is about 0.94 °C, which authenticates the present numerical model.
机译:本文介绍了透析电池模块的数值研究和多客观优化,轴向和径向的协作散热。在电池模块中,在冷板上以方形阵列布置11×10圆柱电池,允许轴向向下的散热。此外,电池的上部用公共散热板径向连接,然后通过与电池相邻的热柱连接到底部冷板,形成径向的热路径。与无散热结构的传统设计配置相比,本构造(基线)的最高温度降低42.10%,而温差不利地增加约11.37%。首先进行单因素分析以识别主要影响变量。然后,通过两个步骤进行多目标优化,以通过最小化最大温度,温差和压降之类的优化目标来优化结构。在步骤2优化之后,电池模块的温差减少到4.28°C,提供良好的拟合协议,与1.52%的数值模拟。与实验相比,数值模拟以及电池中的差异约为0.94°C,验证当前数值模型。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第7期|119701.1-119701.18|共18页
  • 作者单位

    School of Mechanical and Automotive Engineering Shanghai University of Engineering Science 333 Longteng Road Songjiang Shanghai 201620 China;

    School of Mechanical and Automotive Engineering Shanghai University of Engineering Science 333 Longteng Road Songjiang Shanghai 201620 China;

    School of Mechanical and Automotive Engineering Shanghai University of Engineering Science 333 Longteng Road Songjiang Shanghai 201620 China;

    School of Mechanical and Automotive Engineering Shanghai University of Engineering Science 333 Longteng Road Songjiang Shanghai 201620 China;

    School of Mechanical and Automotive Engineering Shanghai University of Engineering Science 333 Longteng Road Songjiang Shanghai 201620 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Collaborative heat dissipation; Multi-objective optimization; Sensitivity analysis; Heat spreader plate; Thermal column; Liquid cooling;

    机译:协同散热;多目标优化;敏感性分析;散热板;热柱;液体冷却;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号