首页> 外文期刊>International Journal of Heat and Mass Transfer >Research on the solution method for thermal contact conductance between circular-arc contact surfaces based on fractal theory
【24h】

Research on the solution method for thermal contact conductance between circular-arc contact surfaces based on fractal theory

机译:基于分形理论的圆弧接触面热接触电导率求解方法研究

获取原文
获取原文并翻译 | 示例
       

摘要

A thermal contact conductance (TCC) prediction model between circular-arc rough contact surfaces is established. The self-similarity and continuity of rough surfaces are characterised by using the Weierstrass-Mandelbrot (W-M) function. Then, the model of contact mechanics is established. In addition, the contact force and deformation of the contact surfaces at different states are calculated by considering the three deformation processes of elastic, elastic-plastic, and complete plastic. Thus, a numerical method for calculating the predicted TCC is provided. The global contact stress and TCC distribution caused by the change in the contact azimuth angle are analysed. Simultaneously, the fractal parameters of the circular-arc contact surfaces and the TCC calculation during the experiment are introduced. The effects of different materials, external contact temperature, contact-surface roughness and contact pressure on the TCC are analysed. The experimental results agree well with the simulation calculations, which validate the accuracy of the simulation results. We find that a temperature waterfall phenomenon occurs between the circular-arc contact surfaces. As the external contact temperature and contact pressure increase, the 'softening' phenomenon of asperities occurs, resulting in an increase in the TCC. Meanwhile, the TCC decreases with the increase in the surface roughness, and it is cross-impacted by the material properties. This study provides a basis for TCC prediction in engineering practice. (C) 2019 Elsevier Ltd. All rights reserved.
机译:建立了圆弧粗糙接触面之间的热接触电导(TCC)预测模型。粗糙表面的自相似性和连续性通过使用Weierstrass-Mandelbrot(W-M)函数来表征。然后,建立了接触力学模型。另外,通过考虑弹性,弹塑性和完全塑性的三个变形过程来计算不同状态下的接触力和接触表面的变形。因此,提供了一种用于计算预测的TCC的数值方法。分析了接触角变化引起的整体接触应力和TCC分布。同时介绍了圆弧接触面的分形参数和实验过程中的TCC计算。分析了不同材料,外部接触温度,接触表面粗糙度和接触压力对TCC的影响。实验结果与仿真计算吻合较好,验证了仿真结果的准确性。我们发现在圆弧接触面之间会出现温度瀑布现象。随着外部接触温度和接触压力的增加,会出现粗糙的“软化”现象,从而导致TCC升高。同时,TCC随着表面粗糙度的增加而降低,并且受到材料性能的交叉影响。该研究为工程实践中TCC的预测提供了依据。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号