首页> 外文期刊>International Journal of Heat and Mass Transfer >Identification of nucleate boiling as the dominant heat transfer mechanism during confined two-phase jet impingement
【24h】

Identification of nucleate boiling as the dominant heat transfer mechanism during confined two-phase jet impingement

机译:在有限的两相射流撞击过程中,核沸腾是主要的传热机制。

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal management of high-power electronics requires cooling strategies capable of dissipating high heat fluxes while maintaining the device at low operating temperatures. Two-phase jet impingement offers a compact cooling technology capable of meeting these requirements at a low pressure drop. Generally, confined impingement geometries are used in electronics cooling applications, where the flow is constrained between the hot surface and orifice plate. Understanding the primary heat transfer mechanisms occurring as boiling takes place on the surface during jet impingement is important, specifically under such confined conditions. In this study, heat transfer from a copper surface is experimentally characterized in both confined jet impingement and pool boiling configurations. The dielectric liquid HFE7100 is used as the working fluid. For the jet impingement configuration, the jet issues through a single 2 mm-diameter orifice, at jet exit velocities of 1, 3, 6, and 9 m/s, into a confinement gap with a spacing of 3 jet diameters between the orifice and heat source. Additional orifice-to-target spacings of 0.5, 1, and 10 jet diameters are tested at the lowest (V-j =1 m/s) and highest (V-j = 9 m/s) jet velocities. By incrementing the heat flux applied to the surface and observing the steady-state response at each flux, the single-phase and two-phase heat transfer performance is characterized; all experiments were carried through to critical heat flux conditions. The jet impingement data in the fully boiling regime either directly overlap the pool boiling data, or coincide with an extension of the trend in pool boiling data beyond the pool boiling critical heat flux limit. This result confirms that nucleate boiling is the dominant heat transfer mechanism in the fully boiling regime in confined jet impingement; the convective effects of the jet play a negligible role over the wide range of parameters considered here. While the presence of the jet does not enhance the boiling heat transfer coefficient, the jet does greatly increase single-phase heat transfer performance and extends the critical heat flux limit. Critical heat flux displays a linear dependence on jet velocity while remaining insensitive to changes in the orifice-to-target spacing. (C) 2018 Elsevier Ltd. All rights reserved.
机译:大功率电子设备的热管理需要能够在保持设备处于较低工作温度的同时散热的散热策略。两相射流冲击技术提供了紧凑的冷却技术,能够在低压降下满足这些要求。通常,在电子冷却应用中使用受限的撞击几何形状,在这些应用中,流量被限制在热表面和孔板之间。了解在射流撞击过程中表面发生沸腾时发生的主要传热机制非常重要,特别是在这种受限条件下。在这项研究中,从铜表面传热的实验是在密闭射流冲击和池沸腾配置中进行的。介电液HFE7100用作工作流体。对于射流撞击配置,射流以直径为1 mm,3、6和9 m / s的单个2毫米直径的小孔流出,进入限制间隙,在小孔和小孔之间的间距为3个射流直径热源。在最低(V-j = 1 m / s)和最高(V-j = 9 m / s)喷射速度下,分别测试了喷嘴直径与目标孔间距为0.5、1和10的情况。通过增加施加到表面的热通量并观察每个热通量的稳态响应,可以表征单相和两相传热性能;所有实验均进行到临界热通量条件。在完全沸腾状态下的射流冲击数据或者直接与池沸腾数据重叠,或者与池沸腾数据趋势的扩展超出池沸腾临界热通量极限相吻合。该结果证实了在有限射流冲击下,核沸腾是全沸腾状态下的主要传热机制。射流的对流作用在这里考虑的各种参数中起着微不足道的作用。尽管射流的存在并没有提高沸腾传热系数,但射流确实极大地提高了单相传热性能并扩展了临界热通量极限。临界热通量显示出对射流速度的线性依赖性,同时对孔到目标间距的变化不敏感。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号