首页> 外文期刊>International Journal of Heat and Mass Transfer >Research on the three-dimensional wall temperature distribution and low-temperature corrosion of quad-sectional air preheater in larger power plant boilers
【24h】

Research on the three-dimensional wall temperature distribution and low-temperature corrosion of quad-sectional air preheater in larger power plant boilers

机译:大型电站锅炉四段式空气预热器三维壁温分布及低温腐蚀研究

获取原文
获取原文并翻译 | 示例
           

摘要

To overall control the wall temperature of rotary quad-sectional air preheater and ensure the safety of boiler units, it is important to research its three-dimensional temperature field. Computational fluid dynamics method (CFD) is used to simulate the heat transfer performance of a 300 MW circulating fluidized bed (CFB) boiler. The temperature of rotor heating surface is defined as user-defined scalar (UDS) to solve scalar equation. Numerical results which are validated by experimental data present the essential parameters such as three-dimensional temperature, heat flux and heat transfer distribution of both working fluid and heating surface. The temperature difference between working fluid and heating surface, heat transfer quantity per unit volume are also obtained. Numerical results show that the different materials and types of heating surface will cause the differences in heat transfer performance between cold end and hot end. The temperature of working fluid are different between cold end and hot end, resulting in volume flow changing to make the scouring velocity different. That is the structural reason for the distinctions in heat transfer performance. It is concluded that low-temperature corrosion mainly occurs in the heating surface at the inlet of hot end in flue gas channel, where the metal temperature need to be kept above acid dew point so as to retard the low-temperature corrosion. (C) 2018 Elsevier Ltd. All rights reserved.
机译:为了全面控制旋转式四段式空气预热器的壁温,确保锅炉机组的安全,研究其三维温度场具有重要意义。计算流体动力学方法(CFD)用于模拟300 MW循环流化床(CFB)锅炉的传热性能。将转子加热表面的温度定义为用户定义的标量(UDS),以求解标量方程。实验数据验证的数值结果表明了基本参数,例如三维温度,热通量以及工作流体和受热面的传热分布。还可以获得工作流体和加热表面之间的温差,每单位体积的传热量。数值结果表明,不同材料和类型的受热面会导致冷端和热端之间的传热性能差异。冷端和热端之间的工作流体温度不同,导致体积流量发生变化,从而使冲刷速度不同。这是传热性能不同的结构原因。结论是,低温腐蚀主要发生在烟气通道热端入口的受热面,在此需要保持金属温度在酸露点以上,以延缓低温腐蚀。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号