...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature
【24h】

Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature

机译:恒定壁温下超临界流体在垂直管内向上传热的数值研究

获取原文
获取原文并翻译 | 示例

摘要

The supercritical fluid has been extensively applied in many industry applications and heat transfer characteristics of the supercritical fluid play an important role in system safety and economic design. In this paper, heat transfer characteristics and mechanism of the supercritical fluid upward in vertical tube with constant wall temperature are numerically investigated. Heat transfer fluctuation phenomenon is found at the trans-critical section where fluid experiences the pseudo-critical point. Heat transfer fluctuation takes place only when the wall temperature is higher than the pseudo-critical temperature and the bulk temperature is lower than the pseudo-critical temperature. The traditional prediction correlation can't predict heat transfer fluctuation at the trans-critical section correctly. Heatflux fluctuation is caused by the buoyancy effect. The buoyancy effect induces the periodic flow variation and the periodic convective heat transfer variation on the radial direction, which determine heatflux fluctuation on the wall. The fluctuation amplitude of heatflux on the wall decreases along the axial direction due to the weakened buoyancy effect. Influence of operating conditions on heat transfer of the supercritical fluid is investigated. R134a is chosen as the working fluid. Operating condition includes mass flow ranging from 500 to 800 kg/(m(2) s), inlet temperature ranging from 313.15 to 343.15 K, wall temperature ranging from 403.15 to 433.15 K and operating pressure ranging from 4.35 to 5.04 MPa. It is observed that heat transfer coefficient rises with mass flow, wall temperature and operating pressure increasing, but it doesn't vary obviously with inlet temperature. Fluctuation amplitude of heat transfer coefficient decreases with mass flow, wall temperature, inlet temperature and operating pressure increasing. (C) 2018 Elsevier Ltd. All rights reserved.
机译:超临界流体已经在许多工业应用中得到广泛应用,并且超临界流体的传热特性在系统安全和经济设计中起着重要作用。本文对壁温恒定的超临界流体在垂直管内的传热特性及机理进行了数值研究。在跨临界区,流体经历伪临界点时发现了传热波动现象。仅当壁温度高于伪临界温度且本体温度低于伪临界温度时,才发生传热波动。传统的预测关联不能正确预测跨临界区的传热波动。热流波动是由浮力作用引起的。浮力效应在径向上引起周期性的流量变化和对流的周期性传热变化,这决定了壁上的热通量波动。由于减弱的浮力作用,壁上的热通量的波动幅度沿轴向减小。研究了工作条件对超临界流体传热的影响。选择R134a作为工作流体。操作条件包括质量流量范围为500至800 kg /(m(2)s),入口温度范围为313.15至343.15 K,壁温范围为403.15至433.15 K和工作压力范围为4.35至5.04 MPa。可以看出,传热系数随着质量流量,壁温和工作压力的增加而增加,但并没有随着入口温度的变化而明显变化。传热系数的波动幅度随质量流量,壁温,入口温度和工作压力的增加而减小。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号