首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method
【24h】

Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method

机译:用3D格子Boltzmann方法数值模拟熔滴中夹带空气撞击并凝固在冷光滑基底上的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a novel 3D lattice Boltzmann method (LBM) is proposed for simulating a molten droplet impacting and solidifying on a cold smooth substrate surrounded by air. The numerical simulation shows that a small pocket of air is entrapped in the molten droplet adjacent to the cold surface after its impact on the surface. And this trapped air creates a thermal resistance between the droplet and the substrate. It is demonstrated that the no-slip velocity of the air on the solid surface prevents the air being squeezed out completely, and the air gap between the droplet and the substrate is compressed by the falling droplet. The compressed air results in the first contact away from the impact center and an air film is trapped within the droplet. This trapped air pocket eventually forms multiple air bubbles or a single air bubble depending on the surface wettability. Although droplet solidification has an important effect on the number of multiple air bubbles trapped on a surface having a small contact angle, it does not affect the size of the single air bubble trapped on a surface having a large contact angle. Maximum spread factors and dimensionless bubble heights obtained from simulation match well with theoretical values in the literature, validating the accuracy of this numerical model. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,提出了一种新颖的3D格子玻尔兹曼方法(LBM),用于模拟熔滴在被空气包围的冷光滑基底上的冲击和固化。数值模拟表明,在撞击到冷表面之后,一小袋空气被困在邻近冷表面的熔融液滴中。并且,这种捕获的空气在液滴和基板之间产生热阻。已经证明,固体表面上空气的无滑移速度阻止了空气被完全挤出,并且液滴和基材之间的气隙被下落的液滴压缩。压缩空气导致第一次接触远离冲击中心,并且气膜被捕获在液滴内。取决于表面的可湿性,该被困的气穴最终形成多个气泡或单个气泡。尽管液滴固化对捕集在具有小接触角的表面上的多个气泡的数量具有重要影响,但是它不影响捕集在具有大接触角的表面上的单个气泡的尺寸。通过仿真获得的最大扩展因子和无因次气泡高度与文献中的理论值非常吻合,验证了此数值模型的准确性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号