首页> 外文期刊>International Journal of Heat and Mass Transfer >Combined grand canonical Monte Carlo and finite volume method simulation method for investigation of direct air capture of low concentration CO_2 by 5A zeolite adsorbent bed
【24h】

Combined grand canonical Monte Carlo and finite volume method simulation method for investigation of direct air capture of low concentration CO_2 by 5A zeolite adsorbent bed

机译:结合大正则蒙特卡罗和有限体积法模拟方法研究5A沸石吸附床直接捕集低浓度CO_2

获取原文
获取原文并翻译 | 示例
       

摘要

A method that combines finite volume method (FVM) and grand canonical Monte Carlo (GCMC) method is proposed to investigate the direct air capture of low concentration CO2 by 5A zeolites in an adsorption bed of a space shuttle. In the FVM, the multicomponent Langmuir model and linear fitting formula are used to calculate saturation adsorption capacities and adsorption heat at macro-scale level, respectively. The GCMC method is used to obtain the parameters of the multicomponent Langmuir model and linear fitting formula at micro-scale level. The combined method overcomes the shortcomings of the saturation adsorption capacities and adsorption heat restricted by experiments or empirical formulas. The effects of inlet velocity, particle size, and porosity on heat and mass transfer in the adsorption bed are predicted. The saturation adsorption time for N-2 is faster than that for CO2. The competitive adsorption process between CO2 and N-2 is divided into three stages, namely, primary, intermediate, and saturation stage. The location of temperature difference peak between solid and gas phase moves toward the outlet of the adsorption bed with increasing velocity, porosity, adsorption time or decreasing particle size. An adsorption bed with high inlet velocity and porosity and small particle size is recommended to achieve improved performance. (C) 2018 Elsevier Ltd. All rights reserved.
机译:提出了一种结合有限体积法(FVM)和大范式蒙特卡洛法(GCMC)的方法,以研究5A沸石在航天飞机吸附床上对低浓度CO2的直接空气捕获。在FVM中,使用多组分Langmuir模型和线性拟合公式分别计算宏观水平的饱和吸附容量和吸附热。 GCMC方法用于在微观尺度上获得多组分Langmuir模型的参数和线性拟合公式。该方法克服了饱和吸附容量和吸附热受实验或经验公式限制的缺点。预测了入口速度,粒度和孔隙率对吸附床中传热和传质的影响。 N-2的饱和吸附时间快于CO2。 CO2和N-2之间的竞争性吸附过程分为三个阶段,即初级,中间和饱和阶段。固相和气相之间的温差峰的位置随着速度,孔隙率,吸附时间或粒径的减小而向吸附床的出口移动。建议使用具有较高入口速度和孔隙率且粒径较小的吸附床,以提高性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号