首页> 外文期刊>International Journal of Heat and Fluid Flow >Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures
【24h】

Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures

机译:输送气液两相混合物的离心泵的流型和外部性能的实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

In order to reveal the mechanism of two-phase flow inside a centrifugal pump, visualization experiments were performed to investigate the gas-liquid two-phase flow patterns by using high-speed photography. Meanwhile, the external performance of the pump was measured under different conditions. The flow patterns in the suction pipe can be classified into plug flow and stratified flow distinguished by the critical inlet gas volume fraction (IGVF) of 6.2%. The critical IGVF of the pump is not obviously influenced by the rotational speed and initial liquid volume flow rate. The flow patterns in the impeller and volute can be classified into four categories with the increasing IGVF. The liquid volume flow rate has a small change in the condition of isolated bubbles flow, an obvious decrease in the condition of bubbly flow, a sharp decrease in the condition of gas pocket flow, and a gentle reduction in the condition of gas-liquid separation flow. Once the IGVF reaches the critical value, some bubbles in the volute begin to flow back into the impeller near the volute tongue. When the flow pattern transfers from gas pocket flow to gas-liquid separation flow, some bubbles in the discharge pipe flow back into the impeller. When the height of gas in the suction pipe reaches a critical value about 70 mm, bubbles sometimes flow into the volute and sometimes flow back into impeller, and the liquid volume flow rate is nearly to be zero. The differential pressure of the pump decreases with the increase of IGVF, and it decreases with the increase of initial liquid volume flow rate at the same IGVF.
机译:为了揭示离心泵内部两相流的机理,进行了可视化实验,通过高速摄影研究了气液两相流的模式。同时,在不同条件下测量了泵的外部性能。吸入管中的流型可分为塞流和分层流,其临界入口气体体积分数(IGVF)为6.2%。泵的临界IGVF不受转速和初始液体体积流量的明显影响。随着IGVF的增加,叶轮和蜗壳中的流型可分为四类。液体体积流量的孤立气泡流动状态变化小,气泡流动状态明显下降,气穴流动状态急剧下降,气液分离状态缓慢下降流。一旦IGVF达到临界值,蜗壳中的一些气泡就开始流回到蜗壳舌片附近的叶轮中。当流型从气袋流转换为气液分离流时,排出管中的一些气泡流回叶轮。当吸入管中的气体高度达到约70 mm的临界值时,气泡有时会流入蜗壳,有时会回流至叶轮,并且液体体积流量几乎为零。在相同的IGVF下,泵的压差随IGVF的增加而减小,并随初始液体体积流量的增加而减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号