首页> 外文期刊>International Journal of Heat and Fluid Flow >Wall heat fluxes and CO formation/oxidation during laminar and turbulent side-wall quenching of methane and DME flames
【24h】

Wall heat fluxes and CO formation/oxidation during laminar and turbulent side-wall quenching of methane and DME flames

机译:甲烷和DME火焰的层流和湍流侧壁淬火过程中的壁热通量和CO的形成/氧化

获取原文
获取原文并翻译 | 示例
       

摘要

This study is focused on the characterization of wall heat fluxes and its influence upon CO formation/oxidation within atmospheric flames in a side-wall quenching geometry. The influence of different wall temperatures ranging between 330 K and 670 K is compared for stoichiometric methane and dimethyl ether (DME) flames. Coherent anti-Stokes Raman spectroscopy (CARS) and two-photon laser induced fluorescence (LIF) of the CO molecule are used to determine pointwise gas phase temperatures and CO concentrations. Simultaneously, wall temperatures are measured using one-dimensional phosphor thermometry and flame front positions are identified by planar OH-LIF imaging. Wall heat fluxes are estimated from measured gas and wall temperatures. For increasing wall temperatures, quenching distances decrease significantly and the maximum wall heat fluxes rise in the quenching region. Additionally, thermochemical states are analysed using CO/T scatter plots. Compared to one-dimensional unbounded laminar flame calculations, the CO/T dependencies are altered significantly by the presence of a wall. Very close to the wall, for methane/air flames and to a lesser extent for DME/air flames at y = 100 mu m, the CO formation branch is shifted towards lower temperatures. In contrast, in the entire near-wall region the CO oxidation branch is shifted to lower temperatures for both fuels. One-dimensional premixed flame calculations accounting for enthalpy losses indicate that the heat loss to the wall is the most likely cause rather than different chemical reaction pathways. Studying the impact of turbulence, both the CO formation and oxidation branch are shifted to lower temperatures in state space. Additionally, an increasing number of intermediate CO mole fractions is observed filling the state space in between both branches. The analysis of turbulent integral time scale derived from PIV data indicates that this phenomenon is dominated by heat transfer, which is enhanced by turbulence.
机译:这项研究的重点是侧壁淬火几何结构中壁热通量的特性及其对大气火焰中CO生成/氧化的影响。比较了化学计量甲烷和二甲醚(DME)火焰在330 K至670 K之间不同壁温的影响。 CO分子的相干抗斯托克斯拉曼光谱(CARS)和双光子激光诱导的荧光(LIF)用于确定逐点气相温度和CO浓度。同时,使用一维荧光粉测温仪测量壁温,并通过平面OH-LIF成像确定火焰前沿位置。壁热通量是根据测得的气体和壁温估算的。为了提高壁温,淬火距离明显减小,并且在淬火区域中最大壁热通量增加。此外,使用CO / T散点图分析热化学状态。与一维无边界层流火焰计算相比,CO / T依赖性因壁的存在而显着改变。对于甲烷/空气火焰,非常接近壁,对于y = 100μm的DME /空气火焰,其程度较小,因此,CO的形成分支移向较低的温度。相反,在整个近壁区域中,两种燃料的CO氧化分支都转移到了较低的温度。考虑到焓损失的一维预混火焰计算表明,壁的热损失是最可能的原因,而不是不同的化学反应路径。通过研究湍流的影响,CO的形成和氧化分支都转移到状态空间中的较低温度。另外,观察到越来越多的中间CO摩尔分数填充两个分支之间的状态空间。从PIV数据得出的湍流积分时间尺度的分析表明,这种现象主要由传热引起,而湍流加剧了这种现象。

著录项

  • 来源
    《International Journal of Heat and Fluid Flow》 |2018年第4期|181-192|共12页
  • 作者单位

    Tech Univ Darmstadt, Inst React Flows & Diagnost, Otto Berndt Str 3, D-64287 Darmstadt, Germany;

    Tech Univ Darmstadt, Inst React Flows & Diagnost, Otto Berndt Str 3, D-64287 Darmstadt, Germany;

    Tech Univ Darmstadt, Inst Simulat React Thermofluid Syst, Otto Berndt Str 3, D-64287 Darmstadt, Germany;

    Tech Univ Darmstadt, Eduard Zintl Inst Inorgan & Phys Chem, Alarich Weiss Str 12, D-64287 Darmstadt, Germany;

    Karlsruher Inst Technol, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany;

    Karlsruher Inst Technol, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany;

    Tech Univ Darmstadt, Eduard Zintl Inst Inorgan & Phys Chem, Alarich Weiss Str 12, D-64287 Darmstadt, Germany;

    Tech Univ Darmstadt, Inst Simulat React Thermofluid Syst, Otto Berndt Str 3, D-64287 Darmstadt, Germany;

    Tech Univ Darmstadt, Inst React Flows & Diagnost, Otto Berndt Str 3, D-64287 Darmstadt, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flame-wall interaction; Side-wall quenching; Quenching distance; Heat flux; Thermochemical state; Dimethyl ether; Laser diagnostics;

    机译:火焰-壁相互作用;壁淬;淬火距离;热通量;热化学状态;二甲醚;激光诊断;
  • 入库时间 2022-08-18 02:59:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号