首页> 外文期刊>International Journal of Grid and Utility Computing >An empirical study of alternating least squares collaborative filtering recommendation for Movielens on Apache Hadoop and Spark
【24h】

An empirical study of alternating least squares collaborative filtering recommendation for Movielens on Apache Hadoop and Spark

机译:Apache Hadoop and Spark的交替最小二乘协作过滤推荐的实证研究

获取原文
获取原文并翻译 | 示例

摘要

In recent years, both consumers and businesses have faced the problem of information explosion, and the recommendation system provides a possible solution. This study implements a movie recommendation system that provides recommendations to consumers in an effort to increase consumer spending while reducing the time between film selection. This study is a prototype of collaborative filtering recommendation system based on Alternating Least Squares (ALS) algorithm. The advantage of collaborative filtering is that it avoids possible violations of the Personal Data Protection Act and reduces the possibility of errors due to poor quality of personal data. Our research improves the ALS's limited scalability by using a platform that combines Spark with Hadoop Yarn and uses this combination to calculate movie recommendations and store data separately. Based on the results of this study, our proposed system architecture provides recommendations with satisfactory accuracy while maintaining acceptable computational time with limited resources.
机译:近年来,消费者和企业都面临信息爆炸问题,建议制度提供了可能的解决方案。本研究实现了电影推荐系统,向消费者提供建议,以便增加消费者支出,同时减少电影选择之间的时间。本研究是基于交替最小二乘(ALS)算法的协作过滤推荐系统的原型。协作过滤的优势在于它避免违反个人数据保护行为的可能性,并降低了由于个人数据质量差而导致错误的可能性。我们的研究通过使用与Hadoop纱线结合的平台来提高ALS的有限可扩展性,并使用此组合来计算电影建议并单独存储数据。基于本研究的结果,我们所提出的系统架构提供了以满意的准确性提供了建议,同时维持有限的资源可接受的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号